Abstract:
Analyses of serum samples for the presence and amount of either of the two subunits of human Factor XIII protein are used as a means of eliminating a significant source of error that arises in the testing of serum and plasma. For serum samples, a negative result of an analysis for the presence of subunit a is a means of verifying that a sample is indeed serum, while a negative or positive result for subunit a serves to distinguish serum (negative) from plasma (positive). A positive result for the presence of subunit b is a means of verifying that the sample is either serum or plasma and not any other biological fluid. A quantitative analysis of subunit b is a means of verifying that the sample is of the intended volume rather than having been reduced in volume due to improper sampling. A quantitative analysis of subunit b is also a means of verifying the dilution of a sample of either serum or plasma.
Abstract:
Biological fluid test samples are analyzed for a broad spectrum of drugs, including benzodiazepines, amphetamines, tricyclic antidepressants and opiates, in a single isocratic analysis using a chromatographic column system containing three analytical columns--an anion exchange column, a reversed phase column and a cation exchange column. A pre-column is also included to purge the sample of salts, proteins, peptides and hydrophilic anions. Carrier liquids containing acetonitrile at various strengths are used for distribution of the various drugs among the columns, elution of the drugs from the columns, and column purging and conditioning. The system readily lends itself to automation, automatic periodic sampling, and component identification and quantification.
Abstract:
Water-soluble polymer is added to the liquid phase in a heterogeneous a immunoassay of serum, the polymer having monomers in common with monomers of the solid phase surface. This reduces non-specific binding of IgG's from the serum to the solid phase surface and thereby reduces the occurrence of false positive readings in the immunoassay.
Abstract:
The present invention is generally directed to the analysis of biological samples. More particularly, the present invention is directed to automated sample analysis for paraproteins using immunosubtraction, capillary electrophoresis and Fourier transformation analysis.
Abstract:
Identification and quantification of paraproteins in a sample is achieved by Fourier analysis of mobility-based electropherograms obtained from capillary electrophoresis. The use of a computer algorithm to analyze capillary electrophoresis data, provides the clinician with methods of detecting levels of paraproteins in serum as low as 0.05 g/dL. Additionally, an individual paraprotein can be located on an electropherogram and used to monitor its increased or decreased production in an individual.
Abstract translation:通过对从毛细管电泳获得的基于迁移率的电泳图进行傅立叶分析来实现样品中蛋白质的鉴定和定量。 使用计算机算法分析毛细管电泳数据,为临床医生提供了检测血清中蛋白质水平低至0.05 g / dL的方法。 另外,个体副蛋白可以位于电泳图上,并用于监测个体中增加或减少的生产。
Abstract:
Biological samples are analyzed for benzodiazepines in a single isocratic analysis using a chromatographic column system containing an immobilized enzyme reactor which cleaves glucuronic acid-conjugated benzodiazepines, an anion exchange column, a hydrophobic cation exchange column and a reverse-phase analytical column. Preferred methods of performing the analysis further involve the use of a hydrophobic cation exchange precolumn prior to the anion exchange column. The system readily lends itself to automation, automatic periodic sampling and benzodiazepine identification and quantification. The system is particularly well adapted to the determination and identification of benzodiazepines in urine samples.
Abstract:
Biological fluid test samples are analyzed for a broad spectrum of drugs, including benzodiazepines, amphetamines, tricyclic antidepressants and opiates, in a single isocratic analysis using a chromatographic column system containing three analytical columns--an anion exchange column, a reversed phase column and a cation exchange column. A pre-column is also included to purge the sample of salts, proteins, peptides and hydrophilic anions. Carrier liquids containing acetonitrile at various strengths are used for distribution of the various drugs among the columns, elution of the drugs from the columns, and column purging and conditioning. The system readily lends itself to automation, automatic periodic sampling, and component identification and quantification.
Abstract:
Analyses of serum samples for the presence and amount of either of the two subunits of human Factor XIII protein are used as a means of eliminating a significant source of error that arises in the testing of serum and plasma. For serum samples, a negative result of an analysis for the presence of subunit a is a means of verifying that a sample is indeed serum, while a negative or positive result for subunit a serves to distinguish serum (negative) from plasma (positive). A positive result for the presence of subunit b is a means of verifying that the sample is either serum or plasma and not any other biological fluid. A quantitative analysis of subunit b is a means of verifying that the sample is of the intended volume rather than having been reduced in volume due to improper sampling. A quantitative analysis of subunit b is also a means of verifying the dilution of a sample of either serum or plasma.
Abstract:
Analyses of serum samples for the presence and amount of either of the two subunits of human Factor XIII protein are used as a means of eliminating a significant source of error that arises in the testing of serum and plasma. For serum samples, a negative result of an analysis for the presence of subunit a is a means of verifying that a sample is indeed serum, while a negative or positive result for subunit a serves to distinguish serum (negative) from plasma (positive). A positive result for the presence of subunit b is a means of verifying that the sample is either serum or plasma and not any other biological fluid. A quantitative analysis of subunit b is a means of verifying that the sample is of the intended volume rather than having been reduced in volume due to improper sampling. A quantitative analysis of subunit b is also a means of verifying the dilution of a sample of either serum or plasma.
Abstract:
Biological samples are analyzed for benzodiazepines in a single isocratic analysis using a chromatographic column system containing an immobilized enzyme reactor which cleaves glucuronic acid-conjugated benzodiazepines, an anion exchange column, a hydrophobic cation exchange column and a reverse-phase analytical column. Preferred methods of performing the analysis further involve the use of a hydrophobic cation exchange precolumn prior to the anion exchange column. The system readily lends itself to automation, automatic periodic sampling and benzodiazepine identification and quantification. The system is particularly well adapted to the determination and identification of benzodiazepines in urine samples.