摘要:
A wastewater evaporation system includes a plurality of tube sections configured to direct compressed air into the wastewater. A portion of the manifold defines an injection head configured to be at least partially submerged below a surface of the wastewater. The wastewater evaporation system also includes an air compressor configured to direct the compressed air to the manifold. The wastewater evaporation system also includes a buoy system coupled to the manifold. The buoy system includes a buoy configured to maintain a portion of the manifold above the surface of the wastewater.
摘要:
The present invention provides an aromatic heterocyclic compound represented by Formula 1 below, an organic light-emitting diode including an organic layer comprising the aromatic heterocyclic compound, and a method of manufacturing the organic light-emitting diode: wherein A, Ar1, Ar2, n, m, and k are as described in the detailed description of the present invention.
摘要:
An organic light emitting device and a method of manufacturing the same, the organic light emitting device includes a first electrode, a second electrode, and an organic layer that has at least a multi-coated emissive layer and which is interposed between the first and second electrodes. The multi-coated emissive layer is a single layer composed of a neutral emissive material and an no−ne parameter of the emissive layer is greater than an no−ne parameter of a single-coated layer. The organic light emitting device has a longer lifetime and high efficiency.
摘要:
Provided are a method of manufacturing an organic light emitting device. The method includes forming an electron injection layer by vacuum co-depositing an organic semiconductor material having an electron mobility of about 1×10−6 cm2/V·s or more in an electric field of about 1×106 V/m and a metal azide.
摘要翻译:提供一种制造有机发光器件的方法。 该方法包括通过在约1×10 6 V / m的电场中真空共沉积具有约1×10 -6 cm 2 / V·s以上的电子迁移率的有机半导体材料形成电子注入层和金属 叠氮化物
摘要:
An organic light emitting device includes a first electrode, a hole injection layer, an inorganic layer, a hole transport layer, an emitting layer which are sequentially formed on the first electrode; and a second electrode. The organic light emitting device has a high emission efficiency and an extended lifetime.
摘要:
Organic white-light-emitting blend materials were prepared by light-doping method and electroluminescent devices fabricated using the same, including a transparent substance, translucent electrode, white-light-emitting layer and metal electrode in order, can efficiently control Förster energy transfer in organic light-emitting materials by performing light doping, thus to fabricate a white electroluminescent device using the blend materials which can emit white-light with high efficiency. The white-light-emitting blend materials can be obtained by the light-doping method, in which the energy transfer occurs only between a host which is a donor and each dopant which is an acceptor, while the energy transfers between dopants are efficiently blocked.
摘要:
A method of patterning a conductive polymer, an organic light emitting device (OLED) manufactured using the method of patterning a conductive polymer, and a method of manufacturing the OLED are provided. The method of patterning a conductive polymer includes forming a conductive polymer layer on a substrate, aligning a shadow mask above the conductive polymer layer, and forming a conductive polymer pattern area and an insulating area in the conductive polymer layer by radiating charged particle beams through the shadow mask.
摘要:
An organic EL device has a layer containing a polyimide having a triphenylamine derivative (TPD) unit. The use of the polyimide as a polymer layer material can ensure solvent selectivity in coating the light-emitting layer and the organic EL device exhibits good luminance efficiency even after a prolonged period use.
摘要:
Provided are a method of manufacturing an organic light emitting device. The method includes forming an electron injection layer by vacuum co-depositing an organic semiconductor material having an electron mobility of about 1×10−6 cm2/V·s or more in an electric field of about 1×106 V/m and a metal azide.
摘要翻译:提供一种制造有机发光器件的方法。 该方法包括通过在约1×10 6 V / m的电场和金属叠氮化物中真空共沉积具有约1×10 -6 cm 2 / V以上的电子迁移率的有机半导体材料形成电子注入层。