摘要:
The present invention relates the manufacture of metal powders, non-oxidic ceramic powders and reduced metal oxide powders using an improved flame spray pyrolysis (“FSP”) process. The invention further relates to an apparatus specifically adapted to said process, to powders/naoncomposites obtained by said process and to the use of said powders/nanocompsites.
摘要:
Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
摘要:
Catalytic methods for the production of saturated hydrocarbons with 2 to 5 carbon atoms per molecule by conversion of small hydrocarbon halides and/or hydrogenation of carbonaceous material are disclosed that result in high yield of saturated C2 to C5 hydrocarbons at reduced corrosion of the reactors and in good lifetime of the catalyst. The methods are performed in the presence of a Lewis acid comprising catalyst and in the absence of oxygen or oxygen containing compounds, whereby an upper limit of at most 50 parts per million mass of oxygen or oxygen containing compounds can be tolerated.
摘要:
The present invention relates the manufacture of metal powders, non-oxidic ceramic powders and reduced metal oxide powders using an improved flame spray pyrolysis (“FSP”) process. The invention further relates to an apparatus specifically adapted to said process, to powders/naoncomposites obtained by said process and to the use of said powders/nanocompsites.
摘要:
Catalytic methods for the production of saturated hydrocarbons with 2 to 5 carbon atoms per molecule by conversion of small hydrocarbon halides and/or hydrogenation of carbonaceous material are disclosed that result in high yield of saturated C2 to C5 hydrocarbons at reduced corrosion of the reactors and in good lifetime of the catalyst. The methods are performed in the presence of a Lewis acid comprising catalyst and in the absence of oxygen or oxygen containing compounds, whereby an upper limit of at most 50 parts per million mass of oxygen or oxygen containing compounds can be tolerated.
摘要:
Described is a method for the production of pure or mixed metal oxides, wherein at least one metal precursor that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3, e.g. the 2-ethyl hexanoic acid salt, is formed into droplets and e.g. flame oxidized. The method is performed at viscosities prior to droplet formation of usually less than 40 mPa s, obtained by heating and/or addition of one or more low viscosity solvents with adequately high enthalpy.