Abstract:
A brake temperature detection device: acquires a kinetic-energy based temperature rise, which is an increase in an amount of brake heat that occurs when kinetic energy generated in a running vehicle is converted into thermal energy by braking; acquires a braking-energy based temperature rise, which is an increase in an amount of brake heat that is calculated from an amount of work done when a brake's friction material is pressed against a friction target material; determines state of slope of a road surface on which the vehicle is running; and detects a brake temperature in accordance with an increase in an amount of brake heat generated in braking. The brake temperature detection device selects, based on the state of slope, either the kinetic-energy based temperature rise or the braking-energy based temperature rise as the increase in the amount of brake heat generated in braking and achieves brake temperature detection.
Abstract:
An electronic control device for controlling operations of an electric parking brake and a service brake: determines a release impossible state in which release operation cannot be performed, based on a fact that a motor current that is supplied to an electric motor of the electric parking brake during release control is maintained in a state of a locked rotor current; and performs, when the release impossible state is determined, back-up pressurization for pressing the piston by generating a brake fluid pressure in the wheel cylinder using the service brake and for pressing the friction-applying member against the friction-applied member.
Abstract:
The electric parking brake control device performs accelerator release control for moving a friction-applying member to a standby position when a vehicle starting operation is performed, the standby position being positioned between a locked position and a released position such that friction-applying member moves from the standby position to the locked position within a time which is shorter than a time required to move from the released position to the locked position. The electric parking brake control device determines whether it is unnecessary to maintain the standby position, based on whether a state in which a vehicle speed exceeds a specific speed threshold value is maintained for a predetermined period of time. The release control is performed when the electric parking brake control device determines that it is unnecessary to maintain the standby position.
Abstract:
An electronic control device for controlling operations of an electric parking brake and a service brake: determines a release impossible state in which release operation cannot be performed, based on a fact that a motor current that is supplied to an electric motor of the electric parking brake during release control is maintained in a state of a locked rotor current; and performs, when the release impossible state is determined, back-up pressurization for pressing the piston by generating a brake fluid pressure in the wheel cylinder using the service brake and for pressing the friction-applying member against the friction-applied member.
Abstract:
An electric parking brake device generates pressing force by pressing friction materials against a brake disc by causing a piston to move by motor operation. A control device executes: parking processing wherein the motor increases the pressing force to an initial pressing force higher than a lower-limit pressing force; and re-drive processing wherein the motor is driven and the pressing force increased at a re-drive time, which is a predetermined time after the end of execution of parking processing. During parking processing, the control device uses one among the initial pressing force and the predetermined time, in addition to a pressing force decrease characteristic corresponding to an assumed temperature set for use in calculation, as a basis to calculate the other of the initial pressing force and the predetermined time such that the pressing force becomes equal to or less than the lower-limit pressing force at the re-drive time.
Abstract:
An EPB control device controlling an electric actuator driving an EPB, wherein the device performs control to reach a lock position, a release position and a standby position between the lock position and the release position. In the lock position, a friction-applying member is thereby pressed against a friction-applied member by the EPB by actuating the electric actuator and a predetermined braking force is generated. In the release position, the friction-applying member is separated from the friction-applied member when the EPB is not actuated. In the standby position, a transition to the lock position is performed in a shorter time than when the EPB is actuated from the release position by the actuation of the electric actuator. The device controls, when a starting operation to start moving a vehicle is performed, the electric actuator such that the standby position is reached.
Abstract:
The electric parking brake control device performs accelerator release control for moving a friction-applying member to a standby position when a vehicle starting operation is performed, the standby position being positioned between a locked position and a released position such that friction-applying member moves from the standby position to the locked position within a time which is shorter than a time required to move from the released position to the locked position. The electric parking brake control device determines whether it is unnecessary to maintain the standby position, based on whether a state in which a vehicle speed exceeds a specific speed threshold value is maintained for a predetermined period of time. The release control is performed when the electric parking brake control device determines that it is unnecessary to maintain the standby position.
Abstract:
A brake temperature detection device: acquires a kinetic-energy based temperature rise, which is an increase in an amount of brake heat that occurs when kinetic energy generated in a running vehicle is converted into thermal energy by braking; acquires a braking-energy based temperature rise, which is an increase in an amount of brake heat that is calculated from an amount of work done when a brake's friction material is pressed against a friction target material; determines state of slope of a road surface on which the vehicle is running; and detects a brake temperature in accordance with an increase in an amount of brake heat generated in braking. The brake temperature detection device selects, based on the state of slope, either the kinetic-energy based temperature rise or the braking-energy based temperature rise as the increase in the amount of brake heat generated in braking and achieves brake temperature detection.