Abstract:
A refractive index sensor is provided for analyzing an analyte, the sensor including: a strip waveguide for receiving an input light signal therein and transmitting the light signal, subject to manipulation as it propagates through the strip waveguide, to a detector for analysis with respect to the analyte; and a slot waveguide for sensing the analyte disposed thereon and for receiving a sensing signal, corresponding to said manipulation of the light signal, from the strip waveguide, wherein a grating is formed on a surface of the strip waveguide to enable coupling of the sensing signal from the strip waveguide to the slot waveguide, and the sensor is configured with enhanced sensitivity based on a sensitivity difference between the slot waveguide and the strip waveguide, and/or a group index difference between the slot waveguide and the strip waveguide.
Abstract:
There is provided a monolithically integrated multimodal sensor device for intracranial neuromonitoring, the sensor device including: a single substrate; a temperature sensor formed on a first portion of the single substrate for detecting temperature; a pressure sensor formed on a second portion of the single substrate for detecting intracranial pressure; and an oxygen sensor formed on a third portion of the single substrate for detecting oxygen concentration. In particular, sensing portions of the temperature sensor, the oxygen sensor and the pressure sensor, respectively, are formed at different layers of the sensor device. There is also provided an integrated multimodal sensor system incorporating the sensor device and the associated methods of fabrication.
Abstract:
Methods and system for the isolation and/or analysis of nucleic acids on a solid phase device comprising (i) incubating a nucleic acid sample with Dimethyl adipimidate (DMA) on said solid phase under conditions that allow formation of a complex of the nucleic acid with the DMA; contacting the complex of (i) with said surface; and isolating and/or analyzing the nucleic acid of the complex.
Abstract:
A refractive index sensor is provided for analysing an analyte, the sensor including: a strip waveguide for receiving an input light signal therein and transmitting the light signal, subject to manipulation as it propagates through the strip waveguide, to a detector for analysis with respect to the analyte; and a slot waveguide for sensing the analyte disposed thereon and for receiving a sensing signal, corresponding to said manipulation of the light signal, from the strip waveguide, wherein a grating is formed on a surface of the strip waveguide to enable coupling of the sensing signal from the strip waveguide to the slot waveguide, and the sensor is configured with enhanced sensitivity based on a sensitivity difference between the slot waveguide and the strip waveguide, and/or a group index difference between the slot waveguide and the strip waveguide
Abstract:
Methods and system for the isolation and/or analysis of nucleic acids on a solid phase device comprising (i) incubating a nucleic acid sample with Dimethyl adipimidate (DMA) on said solid phase under conditions that allow formation of a complex of the nucleic acid with the DMA; contacting the complex of (i) with said surface; and isolating and/or analyzing the nucleic acid of the complex.
Abstract:
According to various embodiments, there is provided a sensor device including a separation reservoir configured to contain a plurality of target molecules; a first electric field generator configured to provide a first electric field across the separation reservoir, the first electric field having a first direction; a second electric field generator configured to provide a second electric field across the separation reservoir, the second electric field having a second direction, wherein the second direction is at least substantially perpendicular to the first direction; and a plurality of sensing elements arranged on a side of the separation reservoir, wherein each sensing element of the plurality of sensing elements is configured to detect target molecules within a vicinity of the respective sensing element.