Abstract:
An apparatus including at least three deflectable members each configured to deflect during assembly with a component, and also configured to remain in contact with the component after assembly with the component. At least one of the deflectable members and the component has a thickness not greater than about 1000 microns.
Abstract:
In one embodiment, the present invention is directed to a system that enables controllable positioning of a fully-released micro-stage. The fully-released micro-stage may be assembled onto a detector substrate that enables micro-positioning feedback. A payload structure (e.g., a lens, mirror, manipulator, and/or the like) may be assembled or coupled onto the fully-release microstage. Snap connectors may facilitate the mechanical coupling associated with assembly of the various components. The fully-released microstage may be actuated by motion amplified actuators that are coupled to anchored flexures. Moreover, the actuation of the fully-release microstage may produce fully decoupled movement by coupling the actuators and respective flexures to the stage in a mirrored fashion.
Abstract:
In one embodiment, the present invention is directed to a method of fabricating a micro-mechanical latching device, comprising: depositing a structural layer in a fabrication plane, wherein the first structural layer possesses a topography; depositing a sacrificial layer adjacent to the first layer such that the sacrificial layer conforms to the topography of the first layer; depositing a second structural layer that conforms to the topography of the first layer; removing the sacrificial layer; and using at least the first structural layer and second structural layer to fabricate the micro-mechanical latching device.
Abstract:
An apparatus including a micro-mechanical calibration member having at least a portion that is elastically biasable away from a neutral position in response to mechanical contact. The apparatus may also include a fixed member proximate the micro-mechanical calibration member which may be referenced to automatically detect deflection of the micro-mechanical calibration member away from the neutral position. The micro-mechanical calibration member may also be configured to receive a micro-mechanical contacting member to provide the mechanical contact employed to bias the micro-mechanical calibration member away from the neutral position.
Abstract:
A MEMS device including a plurality of actuator layers formed over a substrate and a bimorph actuator having a substantially serpentine pattern. The serpentine pattern is a staggered pattern having a plurality of static segments interlaced with a plurality of deformable segments. Each of the plurality of static segments has a static segment length and each of the plurality of deformable segments has a deformable segment length, wherein the deformable segment length is substantially different than the static segment length. At least a portion of each of the plurality of deformable segments and each of the plurality of static segments is defined from a common one of the plurality of actuator layers.
Abstract:
A system and method for storing potential energy in a microcomponent is disclosed comprising a multi-stable element having two or more equilibrium states and a stopper to restrict the multi-stable element from entering at least one of the two or more equilibrium states. The pre-charged microcomponent may then preferably be transported to another location and use the stored potential energy to perform some action.
Abstract:
A MEMS microconnector including a compliant handle and a deflectable connection member. The compliant handle is configured to frictionally engage a manipulation probe. The deflectable connection member includes a first end coupled to the handle and a second end configured to deflect and thereby engage a receptacle in response to disengagement of the manipulation probe from the handle.
Abstract:
A system and method of adjusting the power off positioning of a microactuator is disclosed. The microactuator has a first power off position and comprises a bimorph component. The bimorph comprises at least two materials, wherein the materials have different thermal expansion characteristics. When heated, the bimorph component of the microactuator bends due to asymmetric thermal expansion of the materials. If one of said materials is forced beyond a yield point, then when cooled, the actuator assumes a second power off position. The microactuator maintains the second power off position due to stress in the bimorph, which is induced by forcing the material beyond its yield point.
Abstract:
Linear bimorph actuators are cascaded together in serpentine array structures to achieve large angle rotary displacements. Bimorph units contain single material beams that remain straight when heated coupled with substantially parallel bilayer beams that deflect when heated, due to differential thermal expansion of the layers. For a bilayer beam, advantageous materials are gold on top of polysilicon. The angular deflection is amplified by cascading to achieve cumulative rotational displacements up to greater than 90 degrees. Successive beams can be connected electrically in series to provide a continuous current path for resistive joule heating. In various embodiments, the actuator is fully permanently anchored or releasably attached to a substrate, or at least a segment of the substrate is removed from beneath the actuator to prevent mechanical interference. Embodiments enable single and plural-axis rotational displacement and manipulation of payloads, for example microcomponents, mirrors, and pick-and-place devices.
Abstract:
An apparatus including a micro-mechanical calibration member having at least a portion that is elastically biasable away from a neutral position in response to mechanical contact. The apparatus may also include a fixed member proximate the micro-mechanical calibration member which may be referenced to automatically detect deflection of the micro-mechanical calibration member away from the neutral position. The micro-mechanical calibration member may also be configured to receive a micro-mechanical contacting member to provide the mechanical contact employed to bias the micro-mechanical calibration member away from the neutral position.