LEAF SPRING MATERIAL AND MANUFACTURING METHOD THEREOF
    4.
    发明申请
    LEAF SPRING MATERIAL AND MANUFACTURING METHOD THEREOF 审中-公开
    叶片弹簧材料及其制造方法

    公开(公告)号:US20090139615A1

    公开(公告)日:2009-06-04

    申请号:US12324472

    申请日:2008-11-26

    IPC分类号: C21D1/10 C22C38/00

    CPC分类号: C21D9/02

    摘要: The present invention provides a leaf spring material superior in mechanical characteristics and a manufacturing method of the leaf spring material capable of reliably achieving the same, utilizing induction hardening. The manufacturing method of the leaf spring material comprises the steps of imparting tensile stress on a first surface along the longitudinal direction of the first surface and compressive stress on a second surface along the longitudinal direction of the second surface of a substantially strip-shaped steel plate, and subjecting the first surface to induction hardening. With this induction hardening, an induction-hardened structure having a higher average hardness than that of a parent material structure in the vicinity of the second surface and comprising martensite and finely and evenly dispersed austenite is imparted on a surface layer in the vicinity of the first surface.

    摘要翻译: 本发明提供了一种机械特性优异的板簧材料和利用感应淬火能够可靠地实现的板簧材料的制造方法。 板簧材料的制造方法包括以下步骤:沿着第一表面的纵向方向在第一表面上施加拉伸应力,并且沿着基本条形钢板的第二表面的纵向在第二表面上施加压缩应力 并对第一表面进行感应淬火。 通过这种感应淬火,在第二表面附近具有比母体材料结构高的包含马氏体并且均匀分散的奥氏体的感应硬化结构被赋予在第一 表面。

    NANOCRYSTAL-CONTAINING TITANIUM ALLOY AND PRODUCTION METHOD THEREFOR
    5.
    发明申请
    NANOCRYSTAL-CONTAINING TITANIUM ALLOY AND PRODUCTION METHOD THEREFOR 有权
    含纳米钛合金及其生产方法

    公开(公告)号:US20130284325A1

    公开(公告)日:2013-10-31

    申请号:US13988123

    申请日:2011-11-22

    IPC分类号: C22F1/18 C22C14/00

    CPC分类号: C22F1/183 C22C14/00 C22F1/00

    摘要: An alloy having an α′ martensite which is a processing starting structure is hot worked. The alloy is heated at a temperature increase rate of 50 to 800° C./sec, and strain is given at not less than 0.5 by a processing strain rate of from 0.01 to 10/sec in a case of a temperature range of 700 to 800° C., or by a processing strain rate of 0.1 to 10/sec in a case of a temperature range of 800° C. to 1000° C. By generating equiaxial crystals having average crystal particle diameters of less than 1000 nm through the above processes, a titanium alloy having high strength and high fatigue resistant property can be obtained, in which hardness is less than 400 HV, tensile strength is not less than 1200 MPa, and static strength and dynamic strength are superior.

    摘要翻译: 具有作为加工起始结构的α'马氏体的合金被热加工。 以50〜800℃/秒的升温速度加热合金,在700〜700℃的温度范围内,通过0.01〜10 /秒的加工变形速度,使应变为0.5以上 800℃,或者在800〜1000℃的温度范围内,通过加工应变速度为0.1〜10 /秒。通过生成平均结晶粒径小于1000nm的等轴晶体,通过 可以得到硬度小于400HV,拉伸强度不小于1200MPa,静态强度和动态强度优异的高强度,高耐疲劳性的钛合金。

    Nanocrystal titanium alloy and production method for same
    6.
    发明授权
    Nanocrystal titanium alloy and production method for same 有权
    纳米晶钛合金及其制作方法相同

    公开(公告)号:US09260773B2

    公开(公告)日:2016-02-16

    申请号:US13496750

    申请日:2010-09-22

    摘要: A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of α′ martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.

    摘要翻译: 钛合金的强度高,加工性优异,优选用于汽车等的各种结构材料。钛合金通过以下的制造方法得到。 具有α'马氏体相结构的合金在发生动态再结晶的条件下热加工。 当温度为700至800℃时,以0.1至10 /秒的应变速率,以0.1至10 /秒的应变速率,以50至800℃/秒的加热速率进行加工,应变速率为0.01至10 /秒 温度超过800℃且小于1000℃,以提供不小于0.5的应变。 因此,得到平均粒径小于1000nm的等轴晶体。

    NANOCRYSTAL TITANIUM ALLOY AND PRODUCTION METHOD FOR SAME
    8.
    发明申请
    NANOCRYSTAL TITANIUM ALLOY AND PRODUCTION METHOD FOR SAME 有权
    纳米钛合金及其制造方法

    公开(公告)号:US20120168042A1

    公开(公告)日:2012-07-05

    申请号:US13496750

    申请日:2010-09-22

    IPC分类号: C22F1/16 C22C14/00

    摘要: A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of α′ martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.

    摘要翻译: 钛合金的强度高,加工性优异,优选用于汽车等的各种结构材料。钛合金通过以下的制造方法得到。 具有α'马氏体相结构的合金在发生动态再结晶的条件下热加工。 当温度为700至800℃时,以0.1至10 /秒的应变速率,以0.1至10 /秒的应变速率,以50至800℃/秒的加热速率进行加工,应变速率为0.01至10 /秒 温度超过800℃且小于1000℃,以提供不小于0.5的应变。 因此,得到平均粒径小于1000nm的等轴晶体。

    Co-Cr-Mo-based alloy and production method therefor
    10.
    发明申请
    Co-Cr-Mo-based alloy and production method therefor 失效
    Co-Cr-Mo基合金及其制备方法

    公开(公告)号:US20060185770A1

    公开(公告)日:2006-08-24

    申请号:US11350090

    申请日:2006-02-09

    IPC分类号: H01F1/047

    CPC分类号: C22C19/07 C22F1/10

    摘要: A Co—Cr—Mo-based alloy includes: 63 mass %≦Co

    摘要翻译: Co-Cr-Mo基合金包括:63质量%<= Co <68质量% 15质量%<= Cr <26质量% 10质量%<= Mo <19质量% 余量为不可避免的杂质,其中Cr和Mo的总量为32质量%至37%。 在室温下,合金的质量磁化率为7×4pi×10 -9×3 / kg以下,合金的维氏硬度(Hv)为400 或者更多。