摘要:
A Co—Cr—Mo alloy fine wire has superior biocompatibility, corrosion resistance, wear resistance, processability, and flexibility. A manufacturing method and a planar body or the like formed by processing this fine wire. This is a fine wire of diameter of 200 micrometers or less comprising 26 to 31 weight % of Cr, 8 to 16 weight % of Mo, and the remainder of Co and inevitable impurities, in which the degree of roundness (minor diameter/major diameter) of lateral cross section is 0.6 or more, and the internal structure is uniform with the concentration ratio of high Mo concentration phase to low Mo concentration phase of 1.8 or less.
摘要:
The present invention provides a method for manufacturing a biomedical porous article wherein communicability between the pores in the porous article is ensured and a desired porosity can be easily obtained, the method comprising a plate-like thread cluster formation step in which a plate-like thread cluster is obtained by dispersing many metallic threads made of a biomedical metallic material along a flat surface and entangling them; a compressing step of compressing the plate-like thread cluster into a desired thickness; and a sintering step of sintering the plate-like thread cluster.
摘要:
The present invention provides a method for manufacturing a biomedical porous article wherein communicability between the pores in the porous article is ensured and a desired porosity can be easily obtained, the method comprising a plate-like thread cluster formation step in which a plate-like thread cluster is obtained by dispersing many metallic threads made of a biomedical metallic material along a flat surface and entangling them; a compressing step of compressing the plate-like thread cluster into a desired thickness; and a sintering step of sintering the plate-like thread cluster.
摘要:
The present invention provides a leaf spring material superior in mechanical characteristics and a manufacturing method of the leaf spring material capable of reliably achieving the same, utilizing induction hardening. The manufacturing method of the leaf spring material comprises the steps of imparting tensile stress on a first surface along the longitudinal direction of the first surface and compressive stress on a second surface along the longitudinal direction of the second surface of a substantially strip-shaped steel plate, and subjecting the first surface to induction hardening. With this induction hardening, an induction-hardened structure having a higher average hardness than that of a parent material structure in the vicinity of the second surface and comprising martensite and finely and evenly dispersed austenite is imparted on a surface layer in the vicinity of the first surface.
摘要:
An alloy having an α′ martensite which is a processing starting structure is hot worked. The alloy is heated at a temperature increase rate of 50 to 800° C./sec, and strain is given at not less than 0.5 by a processing strain rate of from 0.01 to 10/sec in a case of a temperature range of 700 to 800° C., or by a processing strain rate of 0.1 to 10/sec in a case of a temperature range of 800° C. to 1000° C. By generating equiaxial crystals having average crystal particle diameters of less than 1000 nm through the above processes, a titanium alloy having high strength and high fatigue resistant property can be obtained, in which hardness is less than 400 HV, tensile strength is not less than 1200 MPa, and static strength and dynamic strength are superior.
摘要:
A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of α′ martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.
摘要:
An alloy having an α′ martensite which is a processing starting structure is hot worked. The alloy is heated at a temperature increase rate of 50 to 800° C./sec, and strain is given at not less than 0.5 by a processing strain rate of from 0.01 to 10/sec in a case of a temperature range of 700 to 800° C., or by a processing strain rate of 0.1 to 10/sec in a case of a temperature range of 800° C. to 1000° C. By generating equiaxial crystals having average crystal particle diameters of less than 1000 nm through the above processes, a titanium alloy having high strength and high fatigue resistant property can be obtained, in which hardness is less than 400 HV, tensile strength is not less than 1200 MPa, and static strength and dynamic strength are superior.
摘要:
A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of α′ martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.
摘要:
A magnetic marker comprises a magnetically switchable wire and a magnetic casing that covers the magnetically switchable wire. The magnetically switchable wire is formed of a magnetic material that undergoes occurrence of sharp magnetic inversion when an alternating field of intensity higher than its coercive force is applied to it. The magnetic casing is formed of a magnetically hard or semihard magnetic material and can apply a bias magnetic field to the magnetically switchable wire to prevent magnetic inversion of the magnetically switchable wire. Heat-treated portions and high-coercivity regions, which are not heat-treated, are formed alternately in the longitudinal direction on the magnetic casing. The heat-treated portions are given magnetic properties different from magnetic properties essential to the magnetic casing by heat treatment such as annealing.