摘要:
A device for selectively controlling and varying a frictional force level at an interface between two bodies, includes a first contact body having at least one surface, a second contact body having at least one surface in physical communication with the first contact body, and an active material in operative communication with a selected one or both of the first contact body and the second contact body, wherein the active material is configured to undergo a change in a property upon receipt of an activation signal wherein the change in a property is effective to change the frictional force level at the interface between the at least one surface of the first contact body and the at least one surface of the second contact body.
摘要:
A device for selectively controlling and varying a frictional force level at an interface between two bodies, includes a first contact body having at least one surface, a second contact body having at least one surface in physical communication with the first contact body, and an active material in operative communication with a selected one or both of the first contact body and the second contact body, wherein the active material is configured to undergo a change in a property upon receipt of an activation signal wherein the change in a property is effective to change the frictional force level at the interface between the at least one surface of the first contact body and the at least one surface of the second contact body.
摘要:
Methods for varying seal force in active seal assemblies for doors employ active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active materials actively change modulus properties such as stiffness, or a combination of modulus and shape in response to an activation signal. In this manner, in seal applications such as a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.
摘要:
An energy harvesting system for converting thermal energy to mechanical energy includes a heat engine that operates using a shape memory alloy active material. The shape memory alloy member may be in thermal communication with a hot region at a first temperature and a cold region at a second temperature lower than the first temperature. The shape memory alloy material may be configured to selectively change crystallographic phase between martensite to austenite and thereby one of contract and expand in response to the first and second temperatures. A thermal conduction element may be in direct contact with the SMA material, where the thermal conduction element is configured to receive thermal energy from the hot region and to transfer a portion of the received thermal energy to the SMA material through conduction.
摘要:
An energy harvesting system for converting thermal energy to mechanical energy includes a heat engine that operates using a shape memory alloy active material. The shape memory alloy member may be in thermal communication with a hot region at a first temperature and a cold region at a second temperature lower than the first temperature. The shape memory alloy material may be configured to selectively change crystallographic phase between martensite to austenite and thereby one of contract and expand in response to the first and second temperatures. A thermal conduction element may be in direct contact with the SMA material, where the thermal conduction element is configured to receive thermal energy from the hot region and to transfer a portion of the received thermal energy to the SMA material through conduction.
摘要:
An energy harvesting system comprises a first region and a second region having a temperature difference therebetween. A plurality of heat engines are located proximate to the conduit and configured for converting thermal energy to mechanical energy. The heat engines each include a shape memory alloy forming at least one generally continuous loop. The shape memory alloy driven to rotate by heat exchange contact with each of the first region and the second region. At least one pulley for each of the plurality of heat engines is driven by the rotation of the respective shape memory alloy, and each of the at least one pulleys is operatively connected to a component to thereby drive the component.
摘要:
An energy harvesting system includes a heat engine and a component. The heat engine includes a belt, a first member, and a second member. The belt includes a strip of material and at least one wire at least partially embedded longitudinally in the strip of material. The wire includes a shape memory alloy material. A localized region of the at least one wire is configured to change crystallographic phase between martensite and austenite and either contract or expand longitudinally in response to exposure to a first temperature or a second temperature such that the strip of material corresponding to the localized region also contracts or expands. The first member is operatively connected to the belt and moves with the belt in response to the expansion or contraction of the belt. The component is operatively connected to the first member such that movement of the first member drives the component.
摘要:
An energy harvesting system comprises a first region and a second region having a temperature difference therebetween. A plurality of heat engines are located proximate to the conduit and configured for converting thermal energy to mechanical energy. The heat engines each include a shape memory alloy forming at least one generally continuous loop. The shape memory alloy driven to rotate by heat exchange contact with each of the first region and the second region. At least one pulley for each of the plurality of heat engines is driven by the rotation of the respective shape memory alloy, and each of the at least one pulleys is operatively connected to a component to thereby drive the component.
摘要:
An energy harvesting system includes a heat engine and a component configured to be driven by operation of the heat engine. The heat engine includes a first member, a second member, a shape memory alloy material, and a tensioner. The second member is spaced from the first member. The shape memory alloy material operatively interconnects the first member and the second member. The shape memory alloy material is configured to selectively change crystallographic phase from martensite to austenite and thereby contract in response to exposure to a first temperature. The shape memory alloy material is also configured to selectively change crystallographic phase from austenite to martensite and thereby expand in response to exposure to a second temperature. The tensioner is configured to apply tension to the shape memory alloy material as the shape memory alloy material selectively expands and contracts such that the shape memory alloy material is taut.
摘要:
An energy harvesting system includes a heat engine and a component configured to be driven by operation of the heat engine. The heat engine includes a first member, a second member, a shape memory alloy material, and a tensioner. The second member is spaced from the first member. The shape memory alloy material operatively interconnects the first member and the second member. The shape memory alloy material is configured to selectively change crystallographic phase from martensite to austenite and thereby contract in response to exposure to a first temperature. The shape memory alloy material is also configured to selectively change crystallographic phase from austenite to martensite and thereby expand in response to exposure to a second temperature. The tensioner is configured to apply tension to the shape memory alloy material as the shape memory alloy material selectively expands and contracts such that the shape memory alloy material is taut.