Abstract:
An FED and a method of manufacture are provided. The FED includes a cathode assembly containing an improved column line structure. The column line structure includes a conductive structure formed on a substrate. A resistive layer is formed on the conductive structure, and an insulator layer is formed partly over the resistive layer. The contact between the base of the emitter tips and the addressing column line is achieved through a lateral side that is not covered by the insulator layer. The insulator layer helps reduce the possibility of electrical shorting between the addressing column line and the row line structure of the cathode assembly. The insulator layer on top of the addressing column line will allow the use of a thinner subsequent dielectric layer. This thinner dielectric layer, which supports the grid, will provide a lower RC time constant and help achieve better video rate operation. The thinner dielectric layer also will result in smaller grid openings above the tips. This will provide for better beam spots, and, therefore, better image resolution. The thinner dielectric layer will require less applied voltage to extract electrons from the tips, resulting in lower power consumption for the FED.
Abstract:
Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.
Abstract:
Conductive contacts in a semiconductor structure, and methods for forming the conductive components are provided. The method comprises depositing a conductive material over a substrate to fill a contact opening, removing excess material from the substrate leaving the contact within the opening, and then heating treating the contact at a high temperature, preferably with a rapid thermal anneal process, in a reactive gas to remove an undesirable component from the contact, for example, thermal annealing a TiCl4-based titanium nitride in ammonia to remove chlorine from the contact, which can be corrosive to an overlying aluminum interconnect at a high concentration. The contacts are useful for providing electrical connection to active components in integrated circuits such as memory devices. In an embodiment of the invention, the contacts comprise boron-doped and/or undoped TiCl4-based titanium nitride having a low concentration of chlorine. Boron-doped contacts further possess an increased level of adhesion to the insulative layer to eliminate peeling from the sidewalls of the contact opening and cracking of the insulative layer when formed to a thickness of greater than about 200 angstroms in a high-aspect-ratio opening.
Abstract:
A method for fabricating a field emission structure is disclosed. A first dielectric layer and a second material layer are disposed over a substrate and at least one emitter tip thereon. Planarization of the second layer exposes regions of the first layer that cover the emitter tip, which regions may then be removed through the second layer. Substantial removal of the second layer reduces any conductive defects that protrude from a surface of the first layer. A third, dielectric layer and fourth, grid layer are then formed. Planarization of the fourth layer forms grid openings and exposes dielectric material of the third layer which overlies the emitter tip. Dielectric material of one or both underlying layers may then be removed to expose the outer surfaces of the emitter tip.
Abstract:
Diffusion barrier film layers and methods of manufacture and use are provided. The films comprise boron-doped TiCl4-based titanium nitride, and provide an improved diffusion barrier having good adhesive, electrical conductivity, and anti-diffusion properties. The films can be formed on a silicon substrate without an underlying contact layer such as TiSix, an improvement in the fabrication of contacts to shallow junctions and other miniature components of integrated circuits.
Abstract:
A method for fabricating field emission arrays employs a single mask to define emitter tips, their corresponding resistors, and, optionally, conductive lines. One or more material layers from which the emitter tips and resistors will be defined are formed over and laterally adjacent substantially parallel conductive lines. The exposed surface of the layer or layers of emitter tip and resistor material or materials may be planarized. The emitter tips and underlying resistors are then defined. Substantially longitudinal center portions of the conductive lines may be exposed between adjacent lines of emitter tips, with at least a lateral edge portion of each conductive line being shielded by material that remains following the formation of the emitter tips and resistors. The exposed portions of the conductive lines may be removed in order to define conductive traces. Field emission arrays and display devices fabricated by such methods are also disclosed.
Abstract:
A method for fabricating row lines over a field emission array employs only two mask steps to define row lines and pixel openings. A layer of conductive material is disposed over a substantially planarized surface of a grid of semiconductive material and a layer of passivation material is disposed over the layer of conductive material. Row lines and pixel openings may be formed through the passivation and conductive layers by use of a first mask. The row lines may be further defined by using a second mask to remove semiconductive material of the grid. Alternatively, a first mask may be used to fully define row lines from the layers of passivation, conductive, and semiconductive material, while a second mask may be used to define pixel openings through the layers of passivation and conductive material. Field emission arrays fabricated by such methods are also disclosed.
Abstract:
An emission structure includes a resistor with at least one emitter tip thereover and at least one substantially vertically oriented conductive element positioned adjacent the resistor. The conductive element may contact the resistor. A method for fabricating the emission structure includes forming at least one conductive line, depositing at least one layer of semiconductive or conductive material over and laterally adjacent the at least one conductive line, and forming a hard mask in recessed areas of the surface of the uppermost material layer. The underlying material layer or layers are patterned through the hard mask, exposing substantially longitudinal center portions of the conductive lines. The remaining semiconductive or conductive material is patterned to form the emitter tip and resistor. At least the substantially central longitudinal portion of the conductive trace is removed to form the conductive element.
Abstract:
A method of fabricating row lines over a field emission array. The method employs only two mask steps to define row lines and pixel openings through selected regions of each of the row lines. In accordance with the method of the present invention, a layer of conductive material is disposed over a substantially planarized surface of a grid of semiconductive material. A layer of passivation material is then disposed over the layer of conductive material. In one embodiment of the method, a first mask may be employed to remove passivation material and conductive material from between adjacent rows of pixels and from substantially above each of the pixels of the field emission array. A second mask is employed to remove semiconductive material from between the adjacent rows of pixels. In another embodiment of the method, a first mask is employed to facilitate removal of passivation material, conductive material, and semiconductive material from between adjacent rows of pixels of the field emission array. A second mask is employed to facilitate the removal of passivation material and conductive material from the desired areas of pixel openings. The present invention also includes field emission arrays having a semiconductive grid and a relatively thin passivation layer exposed between adjacent row lines.
Abstract:
A method of fabricating a field emission array that employs a single mask to define the emitter tips thereof and their corresponding resistors. A layer of conductive material is disposed over a substrate of the field emission array. A plurality of substantially mutually parallel conductive lines is defined from the layer of conductive material. At least one layer of semiconductive material or conductive material is disposed over the conductive lines and over the regions of the substrate exposed between adjacent conductive lines. A mask material is disposed over the layer of semiconductive material or conductive material, substantially above each of the conductive lines. Portions of the layer of semiconductive material or conductive material exposed through the mask material may be removed to expose substantially longitudinal center portions of the conductive lines. Other portions of the layer of semiconductive material or conductive material may remain over peripheral lateral edges of the conductive lines. The mask material may be removed and the layer of semiconductive material or conductive material planarized. A mask is disposed over the field emission array and portions of the layer of semiconductive material or conductive material removed therethrough to define emitter tips and their corresponding resistors. The substantially longitudinal center portion of each of the conductive lines may be removed to electrically isolate adjacent columns of pixels of the field emission array from each other. Field emission arrays fabricated by the method of the present invention are also within the scope of the present invention.