摘要:
A late potential detecting system has an implantable medical device connected to at least one cardiac lead having implantable electrodes positioned at different sites of a ventricle myocardium. A sampling unit of the implantable medical device records electrogram samples for the different implantable electrodes to get different sample sets. The electrogram samples of the sample sets are time synchronized and magnitude potential representations of the potential data of the electrogram samples are determined. The magnitude potential representations of the time synchronized electrogram samples are then co-processed and used for determining a parameter that is indicative of any late potentials of the monitored ventricle.
摘要:
In a medical device and method to monitor pulmonary artery pressure of a patient, a first parameter related to the right ventricular straight volume of the patient's is detected, and a second parameter related to the right ventricular ejection rate of the patient's heart, or related to the workload of the patient's heart, is also determined. A pulmonary pressure index is determined by combining the first and second parameters, with variations of the pulmonary pressure index indicating variations in the pulmonary artery pressure. Pulmonary artery hypertension can be monitored with such a device and method.
摘要:
In implantable medical devices such a pacemaker or cardioverter/defibrillators (ICDs) and systems including such a device and an external programmer a measure of a hemodynamic parameter such as the cardiac output, the stroke volume, or the contractility of a patient is used to trend heart failure or in an AV/VV optimization scheme. The implantable medical device is adapted to measure the cardiac impedance and the cardiac impedance data is used to determine impedance morphology curves, which, in turn, are used to compute a measure of the hemodynamic parameter.
摘要:
In an implantable medical device, such as a bi-ventricular pacemaker and a method for detecting and monitoring mechanical dyssynchronicity of the heart, a dyssynchronicity measure indicating a degree of mechanical dyssynchronicity of a heart of a patient is calculated. A first intracardiac impedance set is measured using electrodes placed such that the first intracardiac impedance set substantially reflects a mechanical activity of the left side of the heart and a second intracardiac impedance set is measure using electrodes placed such that the second intracardiac impedance set substantially reflects a mechanical activity of the right side of the heart. The measure of a dyssynchronicity is calculated based on a resulting parameter set from a comparison between at least a subset of the first and the second impedance sets, respectively, the subsets containing information of the mechanical systole, wherein a reduced dyssynchronicity measure corresponds to an improved synchronicity between the right side and the left side of the heart.
摘要:
In an implantable heart monitoring device and a monitoring method, an impedance is measured across at least part of an atrium, such that variation of the impedance is related to the volume change of the atrium. Values are stored at different occasions that indicate the rate of change of the measured impedance. The stored values are determined such that, when the device is used in a living being, the variation of the stored values will be related to the variation of the speed with which the atrium is filled with blood during the atrial diastole.
摘要:
In a method and a device for trending and prediction of monitored conditions or diseases, an REM sleep detector is provided to allow data collected during REM sleep to be separated from other data so stable and uniform conditions for data collection are achieved. The REM sleep detector can advantageously be provided inside an implantable medical device.
摘要:
An implantable heart analyzing device has a housing and a control circuit located within said housing. The control circuit generates an output signal adapted to actuate an activator, which is able to make a wall of the heart deflect or vibrate. The control circuit also communicates with a sensor, which can be identical with the activator, with which the movement of the heart wall can be sensed. The control circuit executes a procedure that involves the generation of an output signal and sensing a corresponding sensor signal, and to be able to derive information concerning the tension of the heart wall. An implantable heart analyzing includes the aforementioned heart analyzing device, as well as the activator and the sensor. The heart analyzing device and the system implement a method that results in generation of the aforementioned information concerning the tension of the heart wall.
摘要:
An implantable medical device has an oxygen sensor adapted to measure the level of oxygen in oxygenized blood, and to generate an oxygen measurement signal in dependence of the level of oxygen. The oxygen sensor is adapted to perform measurements inside the heart, of blood entering the left atrium of a patient's heart. The obtained oxygen measurement signal is compared to a predetermined threshold level and an indication signal is generated in dependence of the comparison. The, indication signal is indicative of the lung functionality of the patient.
摘要:
In a device and a method for providing correlated measures for predicting potential occurrence of atrial fibrillation, an impedance of the patient is measured to obtain impedance information; cardiogenic data is determined from the information; respiratory data is determined from the information; at least one hemodynamic measure is calculated from the cardiogenic data and at least one apnea measure is calculated from the respiratory data; the hemodynamic and apnea measures are correlated such that the correlated measures can be utilized for predicting potential occurrence of atrial fibrillation.
摘要:
In an implantable medical device and a method for stimulating a heart of a patient, at least one left atrial pressure (LAP) signal over a cardiac cycle is obtained. The A-wave is identified using the LAP signal and a maximum positive rate of change of the A-wave of the LAP signal is determined. The maximum positive rate of change of the A-wave corresponds to the rate which the pressure in the atrium raises as the atria contraction forces more blood into the ventricle during the very last stage of diastole. Further, AV and/or VV delay is adjusted in response to the maximum positive rate of change of the A-wave, wherein a reduction of the maximum positive rate of change of the A-wave indicates an AV and/or VV delay providing an enhanced hemodynamic performance.