Abstract:
The device comprises a first actuating bump made from electrically conducting material with a first contact surface. A second actuating bump made from electrically conducting material is facing the first actuating bump. An electrostatic actuating circuit moves the actuating bumps with respect to one another between a first position and another position. The actuating circuit comprises a device for applying a higher potential on the second actuating bump than on the first actuating bump. A film of electrically insulating material performs electric insulation between the first and second bumps. The electrically insulating material film comprises an interface with a positive ion source and is permeable to said positive ions.
Abstract:
A non-volatile electrochemical memory cell formed of a stack of thin films comprising at least one first active layer, suited to releasing and accepting, in a reversible manner, at least one ion species, at least one second active layer, suited to releasing and accepting said ion species, in a reversible manner, the active layers being based on materials having different compositions and electrochemical potential profiles.
Abstract:
A non-volatile electrochemical memory cell formed of a stack of thin films comprising at least one first active layer, suited to releasing and accepting, in a reversible manner, at least one ion species, at least one second active layer, suited to releasing and accepting said ion species, in a reversible manner, the active layers being based on materials having different compositions and electrochemical potential profiles.
Abstract:
The device comprises first and second contact pads having a contact surface. The first and second contact pads move with respect to one another between an ohmic contact position between these contact surfaces and another position. The device further comprises means for applying a non-uniform electric field around the first contact pad. The electric field has a component in a direction parallel to the contact surface of the first contact pad. A fluid with a first dielectric permittivity value is arranged between the first contact pad and the decontamination electrode. The decontamination device and the fluid are configured in such a way that the electric field generates a force directed towards the decontamination electrode on a contaminant, by dielectrophoresis.