Abstract:
A method and system is disclosed for accessing I/O and memory devices utilizing a DMA controller. Each device may be connected to the DMA controller through an individual channel. Clocking circuitry in the DMA may allow the DMA controller to send signals to each device at a prescribed frequency. Furthermore, the DMA controller is capable of activating and deactivating a channel clock, used in sending signals to the devices, based on the operational status of the individual devices. The DMA controller is also capable of tuning the channel clock dependant on the capabilities of any active devices. In this manner, the amount of bandwidth used during a DMA data transfer can be tailored to the specific requirements of the devices involved with the data transfer.
Abstract:
The disclosed embodiments provide a system that transfers data from a storage device to a host. The system includes a communication mechanism that receives a request to read a set of blocks from the host. Next, upon reading each block from the set of blocks from the storage device, the communication mechanism transfers the block over an interface with the host. The system also includes an error-detection apparatus that performs error detection on the block upon reading the block, and an error-correction apparatus that performs error correction on the block if an error is detected in the block. The communication mechanism may then retransfer the block to the host after the error is removed from the block.
Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a system that leverage intermediate power margins are described. One or more subsystems of the system are operated at one or more performance points. A power consumed by the one or more subsystems at each of the one or more performance points is measured. An operational power of the one or more subsystems at the one or more performance points is determined. The one or more subsystems are operated at well-known conditions at the one or more performance points. The operational power may be adjusted based on data associated with the one or more subsystems. The operational power is provided to a power lookup table. The power is distributed among the one or more subsystems based on the operational power.
Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a system that leverage intermediate power margins are described. One or more subsystems of the system are operated at one or more performance points. A power consumed by the one or more subsystems at each of the one or more performance points is measured. An operational power of the one or more subsystems at the one or more performance points is determined. The one or more subsystems are operated at well-known conditions at the one or more performance points. The operational power may be adjusted based on data associated with the one or more subsystems. The operational power is provided to a power lookup table. The power is distributed among the one or more subsystems based on the operational power.
Abstract:
Exemplary embodiments of methods and apparatuses to provide a cooling arrangement for a system are described. The system includes a component coupled to a heat sink. A signal associated with a temperature control of the component is asserted. A target temperature of the heat sink is adjusted based on the signal. In one embodiment, a temperature control loop of the heat sink is operated. The temperature of the heat sink may be monitored using one or more sensors placed on the heat sink. An operation of the component, a cooling unit coupled to the heat sink, or both, may be adjusted based on a relationship between the temperature of the heat sink and an adjusted target temperature. Adjusting the target temperature of the heat sink based on the asserted signal increases efficiency of the system while decreasing cooling.
Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a system that leverage intermediate power margins are described. One or more subsystems of the system are operated at one or more performance points. A power consumed by the one or more subsystems at each of the one or more performance points is measured. An operational power of the one or more subsystems at the one or more performance points is determined. The one or more subsystems are operated at well-known conditions at the one or more performance points. The operational power may be adjusted based on data associated with the one or more subsystems. The operational power is provided to a power lookup table. The power is distributed among the one or more subsystems based on the operational power.
Abstract:
A display system includes a host device that provides source data to a display. The source data includes one or more data-centric blocks free from a fixed-frame size imposition, fixed-frame rate imposition, or both from the display. Further, the source data includes presentation data. The display system includes a display that receives the source data, decodes the source data to discern a presentation time, a presentation positioning, or both for the presentation data. Further, the display presents the presentation data according to the presentation time, the presentation positioning, or both.
Abstract:
A display system includes a host device that provides source data to a display. The source data includes one or more data-centric blocks free from a fixed-frame size imposition, fixed-frame rate imposition, or both from the display. Further, the source data includes presentation data. The display system includes a display that receives the source data, decodes the source data to discern a presentation time, a presentation positioning, or both for the presentation data. Further, the display presents the presentation data according to the presentation time, the presentation positioning, or both.
Abstract:
Exemplary embodiments of methods and apparatuses to provide a cooling arrangement for a system are described. The system includes a component coupled to a heat sink. A signal associated with a temperature control of the component is asserted. A target temperature of the heat sink is adjusted based on the signal. In one embodiment, a temperature control loop of the heat sink is operated. The temperature of the heat sink may be monitored using one or more sensors placed on the heat sink. An operation of the component, a cooling unit coupled to the heat sink, or both, may be adjusted based on a relationship between the temperature of the heat sink and an adjusted target temperature. Adjusting the target temperature of the heat sink based on the asserted signal increases efficiency of the system while decreasing cooling.
Abstract:
Exemplary embodiments of methods and apparatuses to manage a power of a system that leverage intermediate power margins are described. One or more subsystems of the system are operated at one or more performance points. A power consumed by the one or more subsystems at each of the one or more performance points is measured. An operational power of the one or more subsystems at the one or more performance points is determined. The one or more subsystems are operated at well-known conditions at the one or more performance points. The operational power may be adjusted based on data associated with the one or more subsystems. The operational power is provided to a power lookup table. The power is distributed among the one or more subsystems based on the operational power.