Abstract:
Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.
Abstract:
Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.
Abstract:
One embodiment of the present invention provides a system that facilitates reducing static power consumption of a processor. During operation, the system receives a signal indicating that instruction execution within the processor is to be temporarily halted. In response to this signal, the system halts an instruction-processing portion of the processor, and reduces the voltage supplied to the instruction-processing portion of the processor. Full voltage is maintained to a remaining portion of the processor, so that the remaining portion of the processor can continue to operate while the instruction-processing portion of the processor is in reduced power mode.
Abstract:
Techniques are disclosed for displaying a graphical element in a manner that simulates three-dimensional (3D) visibility (including parallax and shadowing). More particularly, a number of images, each captured with a known spatial relationship to a target 3D object, may be used to construct a lighting model of the target object. In one embodiment, for example, polynomial texture maps (PTM) using spherical or hemispherical harmonics may be used to do this. Using PTM techniques a relatively small number of basis images may be identified. When the target object is to be displayed, orientation information may be used to generate a combination of the basis images so as to simulate the 3D presentation of the target object.
Abstract:
One embodiment of the present invention provides a system that facilitates reducing static power consumption of a processor. During operation, the system receives a signal indicating that instruction execution within the processor is to be temporarily halted. In response to this signal, the system halts an instruction-processing portion of the processor, and reduces the voltage supplied to the instruction-processing portion of the processor. Full voltage is maintained to a remaining portion of the processor, so that the remaining portion of the processor can continue to operate while the instruction-processing portion of the processor is in reduced power mode.
Abstract:
Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.
Abstract:
One embodiment of the present invention provides a system that facilitates reducing static power consumption of a processor. During operation, the system receives a signal indicating that instruction execution within the processor is to be temporarily halted. In response to this signal, the system halts an instruction-processing portion of the processor, and reduces the voltage supplied to the instruction-processing portion of the processor. Full voltage is maintained to a remaining portion of the processor, so that the remaining portion of the processor can continue to operate while the instruction-processing portion of the processor is in reduced power mode.
Abstract:
Techniques are disclosed relating to biometric authentication, e.g., facial recognition. In some embodiments, a device is configured to verify that image data from a camera unit exhibits a pseudo-random sequence of image capture modes and/or a probing pattern of illumination points (e.g., from lasers in a depth capture mode) before authenticating a user based on recognizing a face in the image data. In some embodiments, a secure circuit may control verification of the sequence and/or the probing pattern. In some embodiments, the secure circuit may verify frame numbers, signatures, and/or nonce values for captured image information. In some embodiments, a device may implement one or more lockout procedures in response to biometric authentication failures. The disclosed techniques may reduce or eliminate the effectiveness of spoofing and/or replay attacks, in some embodiments.
Abstract:
A polarizer includes a polarizer component having a top surface and an opposite bottom surface. The bottom surface is configured to couple to a color filter layer for a liquid crystal display. The polarizer also includes a transparent conducting layer disposed over the top surface. The transparent conducting layer being configured to electrically shield the LCD from a touch panel. The polarizer further includes a coating layer disposed over the transparent conducting layer.