Abstract:
Systems and methods for producing a textured pattern on a surface of a part using a laser. The part or laser may be rotated while forming the textured pattern to create a continuous textured pattern on a surface of a part. The continuous textured pattern may be substantially uniform over the entire pattern. A laser texturing system may also include an optical scanner. A first region of the surface of the part may be scanned using a first laser beam. One or more laser texturing parameters or a simulated geometric model may be created based on the scan of the first region. The textured pattern may be formed on the first region using a second laser beam. The textured pattern may be formed in accordance with the one or more laser texturing parameters or simulated geometric model.
Abstract:
The present disclosure provides three-dimensional structures and related methods. The three-dimensional structures may define patterns of positive and negative spaces on opposing surfaces that combine to form the three-dimensional structures. The negative spaces of the patterns may intersect to form apertures through the three-dimensional structures, which may define linear or non-linear paths therethrough. The apertures may be configured to provide desirable characteristics with respect to light, sound, and fluid travel therethrough. Further, the three-dimensional structures may be configured to define desired stiffness, weight, and/or flexibility. The three-dimensional structures may be employed in embodiments including heat sinks, housings, speaker or vent covers, springs, etc.
Abstract:
Electroformed housings for electronic devices and methods for making the same are provided. An electronic device is provided having at least one electronic part and an electroformed housing constructed from a metal that encloses the at least one electronic part.
Abstract:
Embodiments are directed to a wearable device including first and second band straps attached to a device body. A buckle mechanism is configured to attach the first band strap to the second band strap and includes a spring bar attached to an end of the first band strap and a buckle loop engaged to the spring bar. A tang is configured to engage a hole formed in the second band strap to secure the first band strap to the second band strap. The tang defines an aperture that receives the spring bar and is configured to pivot about an offset axis that is offset with respect to an axis of the bar. As the tang is rotated, a restoring force biases the tang toward the buckle loop.
Abstract:
Markings on products are disclosed. In one embodiment, the products have housings and the markings are to be provided on the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on the outer housing surface so as to be visible from the outside of the housing. The markings may be precisely formed using a laser. Processing may be used to increase reflectivity of the markings.
Abstract:
Electroformed housings for electronic devices and methods for making the same are provided. An electronic device is provided having at least one electronic part and an electroformed housing constructed from a metal that encloses the at least one electronic part.
Abstract:
Electroformed housings for electronic devices and methods for making the same are provided. An electronic device is provided having circuitry with interface circuitry for processing a user input event, and an electroformed housing that is an enclosure for the circuitry, the electroformed housing having a user interface region positioned adjacent to the interface circuitry such that when a user initiates a user input event on the user interface region, the interface circuitry processes the user input event.
Abstract:
An electronic device may have a glass housing structures. The glass housing structures may be used to cover a display and other internal electronic device components. The glass housing structure may have multiple glass pieces that are joined using a glass fusing process. A peripheral glass member may be fused along the edge of a planar glass member to enhance the thickness of the edge. A rounded edge feature may be formed by machining the thickened edge. Raised fused glass features may surround openings in the planar glass member. Multiple planar glass members may be fused together to form a five-sided box in which electronic components may be mounted. Raised support structure ribs may be formed by fusing glass structures to a planar glass member. Opaque masking material and colored glass may be used to create portions of the glass housing structures that hide internal device components from view.