Abstract:
A control system that includes deflection sensors which can control clamping forces applied by electrostatic chucks, and related methods are disclosed. By using a sensor to determine a deflection of a workpiece supported by an electrostatic chuck, a control system may use the deflection measured to control a clamping force applied to the workpiece by the electrostatic chuck. The control system applies a clamping voltage to the electrostatic chuck so that the clamping force reaches and maintains a target clamping force. In this manner, the clamping force may secure the workpiece to the electrostatic chuck to enable manufacturing operations to be performed while preventing workpiece damage resulting from unnecessary higher values of the clamping force.
Abstract:
Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
Abstract:
Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heater assembly. The substrate support assembly comprises an upper surface and a lower surface; one or more main resistive heaters disposed in the substrate support; and a plurality of heaters in column with the main resistive heaters and disposed in the substrate support. A quantity of the heaters is an order of magnitude greater than a quantity of the main resistive heaters and the heaters are independently controllable relative to each other as well as the main resistive heater.
Abstract:
Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
Abstract:
Implementations described herein provide a pixilated substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The pixilated substrate support assembly comprises an upper surface and a lower surface; one or more main resistive heaters disposed in the pixilated substrate support; and a plurality of pixel heaters in column with the main resistive heaters and disposed in the substrate support. A quantity of the pixel heaters is an order of magnitude greater than a quantity of the main resistive heaters and the pixel heaters are independently controllable relative to each other as well as the main resistive heater.
Abstract:
Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
Abstract:
Embodiments disclosed herein include a method for minimizing chucking forces on a workpiece disposed on a electrostatic chuck within a plasma processing chamber. The method begins by placing a workpiece on an electrostatic chuck in a processing chamber. A plasma is struck within the processing chamber. A deflection force is monitored on the workpiece. A chucking voltage is applied at a minimum value. A backside gas pressure is applied at a minimum pressure. The chucking voltage and or backside gas pressure is adjusted such that the deflection force is less than a threshold value. And the chucking voltage and the backside gas pressure are simultaneously ramped up.
Abstract:
Embodiments of the invention generally relate to an electrostatic chuck having reduced power loss, and methods and apparatus for reducing power loss in an electrostatic chuck, as well as methods for testing and manufacture thereof. In one embodiment, an electrostatic chuck is provided. The electrostatic chuck includes a conductive base, and a ceramic body disposed on the conductive base, the ceramic body comprising an electrode and one or more heating elements embedded therein, wherein the ceramic body comprises a dissipation factor of about 0.11 to about 0.16 and a capacitance of about 750 picoFarads to about 950 picoFarads between the electrode and the one or more heating elements.
Abstract:
Implementations described herein provide a substrate support assembly which enables both lateral and azimuthal tuning of the heat transfer between an electrostatic chuck and a heating assembly. The substrate support assembly comprises a body having a substrate support surface and a lower surface, one or more main resistive heaters disposed in the body, a plurality of spatially tunable heaters disposed in the body, and a spatially tunable heater controller coupled to the plurality of spatially tunable heaters, the spatially tunable heater controller configured to independently control an output one of the plurality of spatially tunable heaters relative to another of the plurality of spatially tunable heaters.
Abstract:
A control system that includes deflection sensors which can control clamping forces applied by electrostatic chucks, and related methods are disclosed. By using a sensor to determine a deflection of a workpiece supported by an electrostatic chuck, a control system may use the deflection measured to control a clamping force applied to the workpiece by the electrostatic chuck. The control system applies a clamping voltage to the electrostatic chuck so that the clamping force reaches and maintains a target clamping force. In this manner, the clamping force may secure the workpiece to the electrostatic chuck to enable manufacturing operations to be performed while preventing workpiece damage resulting from unnecessary higher values of the clamping force.