EXHAUST GAS TREATMENT SYSTEM FOR ULTRA LOW NOX AND COLD START

    公开(公告)号:US20220203336A1

    公开(公告)日:2022-06-30

    申请号:US17594773

    申请日:2020-04-27

    Inventor: Robert DORNER

    Abstract: The present invention relates to an exhaust gas treatment system for treating an exhaust gas stream leaving an internal combustion engine, wherein said exhaust gas treatment system comprises (i) a first catalyst comprising a coating and a first substrate, wherein the coating comprises a vanadium oxide supported on a first oxidic support comprising titanium; (ii) a hydrocarbon injector for injecting a fluid comprising hydrocarbons into the exhaust gas stream exiting the outlet end of the first catalyst according to (i); (iii) a second catalyst comprising a coating and a second substrate, wherein the coating comprises palladium on a second oxidic support comprising one or more of zirconium, silicon, aluminum and titanium.

    PGM CATALYST COUPLED WITH A NON-PGM CATALYST WITH HC OXIDATION CAPABILITY

    公开(公告)号:US20200070092A1

    公开(公告)日:2020-03-05

    申请号:US16479669

    申请日:2018-02-13

    Abstract: The present invention relates to a diesel oxidation catalyst comprising a substrate and a wash-coat comprising a first layer and a second layer, wherein the substrate has a substrate length, a front end and a rear end, the washcoat comprising the first layer comprising a first metal oxide and comprising a platinum group metal supported on a metal oxide support material; the second layer comprising a second metal oxide and comprising one or more of an oxidic compound of vanadium, an oxidic compound of tungsten and a zeolitic material comprising one or more of Fe and Cu; wherein the first layer is at least partially disposed directly on the substrate, or is at least partially disposed directly on an intermediate layer which is disposed directly on the substrate over the entire length of the substrate, on x % of the length of the substrate from the front end of the substrate, and wherein the second layer is at least partially disposed directly on the substrate, or is at least partially disposed directly on the intermediate layer which is disposed directly on the substrate over the entire length of the substrate, on y % of the length of the substrate from the rear end of the substrate, wherein x is in the range of from 25 to 75 and y is in the range of from 25 to 75 and wherein x+y is in the range of from 95 to 105, wherein the intermediate layer comprises alumina.

    CATALYST FOR THE OXIDATION OF NO, THE OXIDATION OF A HYDROCARBON, THE OXIDATION OF NH3 AND THE SELECTIVE CATALYTIC REDUCTION OF NOX

    公开(公告)号:US20210170366A1

    公开(公告)日:2021-06-10

    申请号:US17045925

    申请日:2019-04-30

    Abstract: The present invention relates to a catalyst for the oxidation of NO, for the oxidation of ammonia, for the oxidation of HC and for the selective catalytic reduction of NOx, comprising a flow through substrate comprising an inlet end, an outlet end, a substrate axial length extending from the inlet end to the outlet end and a plurality of passages defined by internal walls of the flow through substrate extending therethrough; a first coating comprising one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron; a second coating comprising a first platinum group metal component supported on a non-zeolitic first oxidic material and further comprising one or more of a vanadium oxide and a zeolitic material comprising one or more of copper and iron; optionally a third coating comprising a second platinum group metal component supported on a second oxidic material; wherein the third coating is disposed on the surface of the internal walls and under the second coating over z % of the axial length of the substrate from the outlet end to the inlet end, with z being in the range of from 0 to 100; wherein the second coating extends over y % of the axial length of the substrate from the inlet end to the outlet end and is disposed either on the surface of the internal walls, or on the surface of the internal walls and the third coating, or on the third coating, with y being in the range of from 95 to 100; wherein the first coating extends over x % of the axial length of the substrate from the inlet end to the outlet end and is disposed on the second coating, with x being in the range of from 20 to y.

Patent Agency Ranking