Mixed metal oxide catalyst useful for paraffin dehydrogenation

    公开(公告)号:US11033880B2

    公开(公告)日:2021-06-15

    申请号:US16586980

    申请日:2019-09-28

    申请人: Exelus, Inc.

    摘要: The invention relates to a catalyst composition suitable for the dehydrogenation of paraffins having 2-8 carbon atoms comprising zinc oxide and titanium dioxide, optionally further comprising oxides of cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), lanthanum (La), neodymium (Nd), praseodymium (Pr), samarium (Sm), terbium (Tb), ytterbium (Yb), yttrium (Y), tungsten (W) and Zirconium (Zr) or mixtures thereof, wherein said catalyst composition is substantially free of chromium and platinum. The catalysts possess unique combinations of activity, selectivity, and stability. Methods for preparing improved dehydrogenation catalysts and a process for dehydrogenating paraffins having 2-8 carbon atoms, comprising contacting the mixed metal oxide catalyst with paraffins are also described. The catalyst may also be disposed on a porous support in an attrition-resistant form and used in a fluidized bed reactor.

    Use of an anode catalyst layer
    5.
    发明授权

    公开(公告)号:US10938038B2

    公开(公告)日:2021-03-02

    申请号:US15874000

    申请日:2018-01-18

    摘要: A method of operating a fuel cell having an anode, a cathode and a polymer electrolyte membrane disposed between the anode and the cathode, includes feeding the anode with an impure hydrogen stream having low levels of carbon monoxide up to 5 ppm, and wherein the anode includes an anode catalyst layer including a carbon monoxide tolerant catalyst material, wherein the catalyst material includes: (i) a binary alloy of PtX, wherein X is a metal selected from the group consisting of rhodium and osmium, and wherein the atomic percentage of platinum in the alloy is from 45 to 80 atomic % and the atomic percentage of X in the alloy is from 20 to 55 atomic %; and (ii) a support material on which the PtX alloy is dispersed; wherein the total loading of platinum group metals (PGM) in the anode catalyst layer is from 0.01 to 0.2 mgPGM/cm2.