Abstract:
The present disclosure relates to processes for formation of a molecular sieve, particularly a metal-promoted molecular sieve, and more particularly an Iron(III) exchanged zeolite. Preferably, the zeolite is of the chabazite form or similar structure. The processes can include combining a zeolite with Iron(III) cations in an aqueous medium. The process can be carried out at a pH of less than about 7, and a buffering material can be used with the aqueous medium. The processes beneficially result in Iron exchange that can approach 100% along with removal of cations (such as sodium, NH4, and H) from the zeolite. An Iron(III)-exchanged zeolite prepared according to the disclosed processes can include about 2,000 ppm or less of cation and about 1% by weight or greater of Iron(III). The disclosure also provides catalysts (e.g., SCR catalysts) and exhaust treatment systems including the Iron(III)-exchanged zeolite.
Abstract:
Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.
Abstract:
The present disclosure relates to processes for formation of a molecular sieve, particularly a metal-promoted molecular sieve, and more particularly an Iron(III) exchanged zeolite. Preferably, the zeolite is of the chabazite form or similar structure. The processes can include combining a zeolite with Iron(III) cations in an aqueous medium. The process can be carried out at a pH of less than about 7, and a buffering material can be used with the aqueous medium. The processes beneficially result in Iron exchange that can approach 100% along with removal of cations (such as sodium, NH4, and H) from the zeolite. An Iron(III)-exchanged zeolite prepared according to the disclosed processes can include about 2,000 ppm or less of cation and about 1% by weight or greater of Iron(III). The disclosure also provides catalysts (e.g., SCR catalysts) and exhaust treatment systems including the Iron(III)-exchanged zeolite.
Abstract:
Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
Abstract:
Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
Abstract:
Described is a selective catalytic reduction catalyst comprising an iron-promoted 8-ring small pore molecular sieve. Systems and methods for using these iron-promoted 8-ring small molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are also described.
Abstract:
Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.
Abstract:
The present disclosure relates to processes for formation of a molecular sieve, particularly a metal-promoted molecular sieve, and more particularly an Iron(III) exchanged zeolite. Preferably, the zeolite is of the chabazite form or similar structure. The processes can include combining a zeolite with Iron(III) cations in an aqueous medium. The process can be carried out at a pH of less than about 7, and a buffering material can be used with the aqueous medium. The processes beneficially result in Iron exchange that can approach 100% along with removal of cations (such as sodium, NH4, and H) from the zeolite. An Iron(III)-exchanged zeolite prepared according to the disclosed processes can include about 2,000 ppm or less of cation and about 1% by weight or greater of Iron(III). The disclosure also provides catalysts (e.g., SCR catalysts) and exhaust treatment systems including the Iron(III)-exchanged zeolite.
Abstract:
The present disclosure relates to processes for formation of a molecular sieve, particularly a metal-promoted molecular sieve, and more particularly an Iron(III) exchanged zeolite. Preferably, the zeolite is of the chabazite form or similar structure. The processes can include combining a zeolite with Iron(III) cations in an aqueous medium. The process can be carried out at a pH of less than about 7, and a buffering material can be used with the aqueous medium. The processes beneficially result in Iron exchange that can approach 100% along with removal of cations (such as sodium, NH4, and H) from the zeolite. An Iron(III)-exchanged zeolite prepared according to the disclosed processes can include about 2,000 ppm or less of cation and about 1% by weight or greater of Iron(III). The disclosure also provides catalysts (e.g., SCR catalysts) and exhaust treatment systems including the Iron(III)-exchanged zeolite.
Abstract:
Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.