摘要:
A manufacturing method of a honeycomb structure includes a forming step of forming a honeycomb formed body by use of a kneaded material containing a cordierite forming raw material, a slurry coating step of coating a coating layer forming slurry which contains a cordierite forming raw material on four regions in a rotation area when each of two straight lines passing through the center of gravity of the cross section and extending in a diagonal direction of main quadrangular cells is rotated in a range of ±x° of the center of gravity in a circumferential surface, and a firing step of firing the honeycomb formed body on which the slurry is coated. The value x is in a range of 7 to 45, and the slurry is adjusted so that the coating layer has a porosity higher than that of the honeycomb structure body as much as 5% or more.
摘要:
This disclosure relates to new crystalline microporous solids (including silicate- and aluminosilicate-based solids), the compositions comprising 8 and 10 membered inorganic rings, particularly those having RTH topologies having a range of Si:Al ratios, methods of preparing these and known crystalline microporous solids using certain quaternized imidazolium cation structuring agents.
摘要:
Provided are zeolite catalysts that allow reactions to proceed at temperatures as low as possible when lower olefins are produced from hydrocarbon feedstocks with low boiling points such as light naphtha, make it possible to make propylene yield higher than ethylene yield in the production of lower olefins, and have long lifetime.The zeolite catalysts are used in the production of lower olefins from hydrocarbon feedstocks with low boiling points such as light naphtha. The zeolite catalysts are MFI-type crystalline aluminosilicates containing iron atoms and have molar ratios of iron atoms to total moles of iron atoms and aluminum atoms in the range from 0.4 to 0.7. The use of the zeolite catalysts make it possible to increase propylene yield, to lower reaction temperatures, and to extend catalyst lifetime.
摘要:
A heterogeneous catalyst article having at least one combination of a first molecular sieve having a medium pore, large pore, or meso-pore crystal structure and optionally containing a first metal, and a second molecular sieve having a small pore crystal structure and optionally containing a second metal, and a monolith substrate onto or within which said catalytic component is incorporated, wherein the combination of the first and second molecular sieves is a blend, a plurality of layers, and/or a plurality of zones.
摘要:
There is disclosed a microporous crystalline material having pore opening ranging from 3 to 5 Angstroms, where the material comprises a first metal chosen from alkali earth group, rare earth group, alkali group, or mixtures thereof, and a second metal chosen from iron, copper or mixtures thereof; and has a molar silica to alumina ratio (SAR) from 3 to 10. The microporous crystalline material disclosed herein may comprise a crystal structure having building units of double-6-rings (d6r) and pore opening of 8-rings as exemplified with framework types defined by the Structure Commission of the International Zeolite Association having structural codes of CHA, LEV, AEI, AFT, AFX, EAB, ERI, KFI, SAT, TSC, and SAV. There is also disclosed a method of selective catalytic reduction of nitrogen oxides in exhaust gas, comprising at least partially contacting the exhaust gases with an article comprising the disclosed microporous crystalline material.
摘要:
The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a BEA framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising seed crystals and at least one source for YO2; and (2) crystallizing the mixture; wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises at least one alkali metal M, wherein when the BEA framework additionally comprises X2O3, the mixture according to step (1) comprises at least one source for X2O3, and wherein the seed crystals comprise zeolitic material having a BEA framework structure, preferably zeolite Beta.
摘要:
Disclosed are a catalyst comprising (A) an aluminosilicate molecular sieve comprising a ferrierite phase and (B) a hydrogenation metal component, and a hydroalkylation process using the catalyst. The catalyst and the hydroalkylation process can be used in the production of phenol and/or cyclohexanone from benzene hydroalkylation.
摘要:
Provided is a catalyst composition for treating exhaust gas comprising a blend of a first component and second component, wherein the first component is an aluminosilicate or ferrosilicate molecular sieve component wherein the molecular sieve is either in H+ form or is ion exchanged with one or more transition metals, and the second component is a vanadium oxide supported on a metal oxide support selected from alumina, titania, zirconia, cella, silica, and combinations thereof. Also provided are methods, systems, and catalytic articles incorporating or utilizing such catalyst blends.
摘要:
This disclosure relates to new crystalline microporous solids (including silicate- and aluminosilicate-based solids), the compositions comprising 8 and 10 membered inorganic rings, particularly those having CIT-7 topologies having a range of Si:Al ratios, methods of preparing these and known crystalline microporous solids using certain quaternized imidazolium cation structuring agents.
摘要:
This invention is for a catalyst for conversion of hydrocarbons. The catalyst contains a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework. At least one Group 10 metal, such as platinum, is deposited on the zeolite. Examples of the elements in the framework are tin, boron, iron or titanium. The catalyst is prepared by synthesizing a zeolite with one element from Group 13, Group 14, or the first series transition metals and, optionally, germanium and/or aluminum in the zeolite framework; depositing the metal; and calcining after preparation of the zeolite and before or after depositing the metal. The catalyst may be used in a process for the conversion of hydrocarbons, such as propane to aromatics, by contacting the catalyst with alkanes having 2 to 12 carbon atoms per molecule and recovering the product.