Abstract:
The invention relates to an oxidation catalyst comprising at least one inorganic, oxidic or ceramic, shaped support body having a BET surface area of less than 0.5 m2/g, based on the support, which is at least partly coated with a catalytically active multielement oxide, the catalyst being precious metal-free and the shaped support body having the form of a saddle whose saddle surface is curved oppositely in the two principal directions, to a process for producing it, to its use in various catalytic gas phase oxidations, and to corresponding processes for catalytic gas phase oxidation.
Abstract:
An α,β-unsaturated aldehyde and/or an α,β-unsaturated carboxylic acid are prepared by gas phase oxidation of alkene with molecular oxygen over a fixed catalyst bed comprising a bed of hollow cylindrical shaped catalyst bodies having a multimetal oxide active composition. The fixed catalyst bed comprises at least three successive reaction zones; the highest local temperature in the fixed catalyst bed does not occur in the reaction zone closest to the reactor outlet; the highest local temperature in the fixed catalyst bed does not occur in the reaction zone closest to the reactor inlet; and the value WT=(ED−ID)/2 in the reaction zone in which the highest local temperature in the fixed catalyst bed occurs is lower than in the other reaction zones, in which ED is the external diameter and ID is the internal diameter of the shaped catalyst body. The yield of the products of value is enhanced in this way.
Abstract:
What is described is a catalyst for preparation of an α,β-unsaturated carboxylic acid by gas phase oxidation of an α,β-unsaturated aldehyde, comprising a shaped support body with an active composition applied thereto, wherein the active composition coverage q q = Q ( 100 - Q ) S m is at most 0.3 mg/mm2, where Q is the active composition content of the catalyst in % by weight and Sm is the specific geometric surface area of the shaped support body in mm2/mg. Also described are a process for preparing the catalyst and a process for preparing an α,β-unsaturated carboxylic acid by gas phase oxidation of an α,β-unsaturated aldehyde over a fixed catalyst bed comprising a bed of the catalyst. The catalyst, with constantly high conversion of acrolein, reduces overoxidation to COx and increases the selectivity of acrylic acid formation.
Abstract:
A method for producing a multimetal oxide catalyst comprises preparation of a precursor composition, exposing said precursor composition to elevated temperatures to activate the composition, and grinding the activated composition. The preparation of the precursor composition comprises: a) forming a plasticized precursor composition from the constituents of the composition; b) discharging the plasticized precursor composition from an extruder having at least one die to form extrudates; c) allowing the extrudates to drop onto a transfer surface disposed beneath the at least one die whereby the extrudates break into pieces which come to rest on the transfer surface; d) transferring the pieces to at least one drying chamber; and e) moving the pieces, through the at least one drying chamber on an air permeable drying conveyor belt; wherein steps b) through d) are carried out under reduced pressure. The method allows the production of a multimetal oxide catalyst with uniform characteristics. Fine particles of the multimetal oxide precursor that may be generated during extrusion of the plasticized precursor composition and handling of the extrudates are removed.
Abstract:
A process for preparing (meth)acrylic acid by heterogeneously catalyzed gas phase partial oxidation of (meth)acrolein over a multimetal oxide composition which comprises the elements Mo, V and W and is obtained by a hydrothermal preparation route, and the multimetal oxide composition obtainable by this preparation route.