Abstract:
A catalytic system is provided which comprises a tubular reactor and at least one catalyst particle located within the tubular reactor. The catalyst particles have a particular geometric form which promotes heat transfer with the tubular reactor. Certain specific catalyst particles are also provided.
Abstract:
Catalyst gauze (1) for the reduction of the amount of N2O in an ammonia oxidation process, containing a first layer (2) of woven or knitted first wire material (4), whereby said first wire material (4) is made from Pd or a Pd-rich alloy, whereby said first layer (2) contains a reinforcement in the form of a second wire material (5) which is woven or knitted among the first wire material (4) and which has a different composition than the first wire material (5).
Abstract:
The present disclosure relates to a single shell open interstage reactor (“SSOI”). The SSOI comprises a first reaction stage, an interstage heat exchanger, an open interstage region, and a second reaction stage. The SSOI may be configured for upflow or downflow operation. Further, the open interstage region of the SSOI may comprise a supplemental oxidant feed. When the open interstage region comprises a supplemental oxidant feed, the SSOI may further comprise a supplemental oxidant mixing assembly. Processes for producing acrylic acid through the oxidation of propylene are also disclosed.
Abstract:
An object is extruded to have the form of a cage, the cage defined by spokes corresponding to several extrudate streams. The spokes bound a hollow interior and extend between opposed hub regions where the spokes are fused together. In manufacturing the objects, ceramic material is extruded through multiple dies arrayed around an extrusion axis, the dies mounted to permit controlled movement of the dies during the course of extrusion to vary the position of extrudate streams exiting the dies.
Abstract:
A catalyst arrangement disposed within a vertical reaction tube includes a structured catalyst within an upper part of the reaction tube, a particulate catalyst beneath the structured catalyst in a lower part of the reaction tube, and a catalyst support device located between the structured catalyst and the particulate catalyst, wherein the catalyst support device includes a cylindrical body having a first end adapted for connection to the structured catalyst, and a second end, and the cylindrical body has a diameter 70-90% of the internal diameter of the tube and a length/diameter in the range 0.5-2.5.
Abstract:
Described herein are flexible seals for directing fluid flow in a tubular reactor, such as a reformer, for enhancing heat transfer and reactor efficiency. The seals can be made of corrugated metal foil that is expandable in the radial direction for accommodating the expansion and contraction of reactor components in the tubular reactor during operation. The seals can block or redirect fluid flow through the reactor. Fluid is directed to the interior of the reactor by the seals and bypass around the outer circumference of the reactor components is reduced or eliminated.
Abstract:
A catalyst structure suitable for use in an ammonia oxidation process is described including a plurality of shaped catalyst units supported on one or more members in a spaced relationship that allows the structure to flex.
Abstract:
A continuous fixed-bed catalytic reactor includes an inflow path for raw material gas for a catalytic reaction and an outflow path for reformed gas, a catalytic reaction container that is connected to the inflow path and the outflow path and holds a clumpy catalyst, catalyst holders that have a ventilation property and hold the clumpy catalyst, and a driving mechanism that moves the clumpy catalyst up and down by moving the catalyst holders up and down.
Abstract:
A wire standoff suitable for use in a tubular reactor, such as a reformer, is described. The wire standoff includes a portion or segment positioned between an outer reactor tube and one or more reactor components located within the tube. The reactor components and the outer tube are prevented from coming into directed contact with one another by the positioning of the wire standoff. The wire standoff can be secured to a reactor component at one of its ends or to a washer located between stacked reactor components. Prevention of the reactor components from contact with the outer tube promotes fluid flow through the reactor and can enhance heat transfer and reactor efficiency for carrying out catalytic reactions.
Abstract:
A process for charging a longitudinal section of a catalyst tube with a homogeneous fixed catalyst bed section whose active composition is at least one multielement oxide or comprises elemental silver on an oxidic support body and whose geometric shaped catalyst bodies and shaped inert bodies have a specific inhomogeneity of their longest dimensions.