摘要:
An apparatus includes one or more interface circuits, an interconnect, a memory controller, a memory bridge, a packet DMA circuit, and a switch. The memory controller, the memory bridge, and the packet DMA circuit are coupled to the interconnect. Each interface circuit is coupled to a respective interface to receive packets and/or coherency commands from the interface. The switch is coupled to the interface circuits, the memory bridge, and the packet DMA circuit. The switch is configured to route the coherency commands from the interface circuits to the memory bridge and the packets from the interface circuits to the packet DMA circuit. The memory bridge is configured to initiate corresponding transactions on the interconnect in response to at least some of the coherency commands. The packet DMA circuit is configured to transmit write transactions on the interconnect to the memory controller to store the packets in memory.
摘要:
An apparatus may include a first system and a second system. The first system includes a first plurality of interface circuits, and each of the first plurality of interface circuits is configured to couple to a separate interface. The second system includes a second plurality of interface circuits, and each of the second plurality of interface circuits is configured to couple to a separate interface. A first interface circuit of the first plurality of interface circuits and a second interface circuit of the second plurality of interface circuits are coupled to a first interface. Both the first interface circuit and the second interface circuit are configured to communicate packets, coherency commands, and noncoherent commands on the first interface.
摘要:
A node comprises at least one agent and an input/output (I/O) circuit coupled to an interconnect within the node. The I/O circuit is configured to communicate on a global interconnect to which one or more other nodes are coupled during use. Addresses transmitted on the interconnect are in a first local address space of the node, and addresses transmitted on the global interconnect are in a global address space. The first local address space includes at least a first region used to address at least a first resource of the node. The node is programmable, during use, to relocate the first region within the first local address space, whereby a same numerical value in the first local address space and a second local address space corresponding to one of the other nodes coupled to the global interconnect refers to the first resource in the node during use.
摘要翻译:节点包括耦合到节点内的互连的至少一个代理和输入/输出(I / O)电路。 I / O电路被配置为在使用期间一个或多个其他节点耦合到的全局互连上进行通信。 在互连上发送的地址在节点的第一本地地址空间中,并且在全局互连上发送的地址在全局地址空间中。 第一本地地址空间至少包括用于寻址节点的至少第一资源的第一区域。 该节点在使用期间是可编程的,以重新定位第一本地地址空间内的第一区域,由此第一本地地址空间中的相同数值和对应于耦合到全局互连的其他节点之一的第二本地地址空间 到使用中的节点的第一个资源。
摘要:
A shared memory system includes a plurality of processing nodes and a packetized input/output link. Each of the plurality of processing nodes includes a processing resource and memory. The packetized I/O link operably couples the plurality of processing nodes together. One of the plurality of processing nodes is operably coupled to: initiate coherent memory transactions such that another one of plurality of processing nodes has access to a home memory section of the memory of the one of the plurality of processing nodes; and facilitate transmission of a coherency transaction packet between the memory of the one of the plurality of processing nodes and the another one of the plurality of processing nodes over the packetized I/O link.
摘要:
In accordance with the present invention a system for detecting transaction errors in a system comprising a plurality of data processing devices using a common system interconnect bus, comprises a node controller operably connected to said system interconnect bus and a plurality of interface agents communicatively coupled to said node controller. Error corresponding to transactions between said interface agents and other processing modules in said system are directed to said node controller; and wherein transaction errors that would not normally be communicated to said system interconnect bus are communicated by said node controller to said system interconnect bus to be available for detection. In an embodiment of the present invention, the interface agents operate in accordance with the hypertransport protocol. A system control and debug unit and a trace cache operably connected to the system bus can be used to diagnose and store errors conditions.
摘要:
A system for synchronizing configuration information in a plurality of data processing devices using a common system interconnect bus. The present invention provides a method and apparatus for enforcing automatic updates to the configuration registers in various agents in the data processing system. The interface agent are not required to have target/response logic to respond to internal and external configuration accesses. In and embodiment of the present invention, a node controller, which may comprise a configuration block, is operably connected to a system interconnect bus and a switch. A plurality of interface agents are connected to the switch, with each of the interface agents comprising a configuration space register, a configuration space shadow register and a control and status register (CSR). A token ring connected to the node controller is operable to transmit data from the node controller to a plurality of interface agents connected to the token ring, thereby providing a system for updating the various configuration registers in each of the agents. A transaction from an interface agent is transferred to the node controller which transfers the transaction onto the system interconnect bus. The transaction on the system interconnected bus is detected by the configuration block of the node controller and is then transmitted on the token ring to each of the agents connected thereto. The information transmitted on the token ring is used to update the information in the configuration space registers and configuration space shadow registers of each of the agents connected to the token ring. In an embodiment of the invention the interface agents are configured in accordance with the Hypertransport protocol. In this embodiment, the configuration comprises a HT configuration space register and the configuration space shadow register comprise a HT configuration space shadow register.
摘要:
A virtual core management system including a physical core and a first virtual core including a collection of logical states associated with execution of a first program. The first virtual core is mapped to the physical core. The virtual core management system further includes a second virtual core including a collection of logical states associated with execution of a second program, and a virtual core management component configured to unmap the first virtual core from the physical core and map the second virtual core to the physical core in response to the virtual core management component detecting that the physical core is idle.
摘要:
Systems and methods described herein are directed to solutions for Network on Chip (NoC) interconnects that automatically and dynamically determines the number of layers needed in a NoC interconnect system based on the bandwidth requirements of the system traffic flows. The number of layers is dynamically allocated and minimized by performing load balancing of the traffic flows between the channels and routes of different NoC layers as they are mapped. Additional layers may be allocated to provide the additional virtual channels that may be needed for deadlock avoidance and to maintain the isolation properties between various system flows. Layer allocation for additional bandwidth and additional virtual channels (VCs) may be performed in tandem.
摘要:
A method, system and computer program product for promoting a trace in an instruction processing circuit is disclosed. They comprise determining if a current trace is promotable and determining if a next trace is appendable to the current trace. They include promoting the current trace and the next trace if the current trace is promotable and the next trace is appendable.
摘要:
A system includes a plurality of processors and a monitor coupled to each of the plurality of processors. The monitor is located in a location separate from the plurality of processors. At least some portions of one or more of the plurality of processors enter a power-conservation mode after the one or more of the plurality of processors request one or more resources. The system further includes a power-management controller. The power-management controller is operative to cause the at least some portions of the one or more of the plurality of processors to enter the power-conservation mode after the one or more of the plurality of processors request the one or more resources.