Abstract:
A method of obtaining a measure of asymmetry between optical fibers of a forward and reverse paths is provided in order to synchronize clocks of optical nodes connected by asymmetrical optical fiber paths. The method includes receiving, at first and second arrival times, from a first optical network device, a first optical signal transmitted on a first optical fiber and a second optical signal transmitted on a second optical fiber, calculating a first time difference between the second arrival time and the first arrival time. The method includes determining a measure of asymmetry between the first optical fiber and the second optical fiber based on the first time difference and a second time difference between a first time of transmission by the first optical network device of the first optical signal and a second time of transmission by the first optical network device of the second optical signal.
Abstract:
A method of obtaining a measure of asymmetry between optical fibers of a forward and reverse paths is provided in order to synchronize clocks of optical nodes connected by asymmetrical optical fiber paths. The method includes receiving, at first and second arrival times, from a first optical network device, a first optical signal transmitted on a first optical fiber and a second optical signal transmitted on a second optical fiber, calculating a first time difference between the second arrival time and the first arrival time. The method includes determining a measure of asymmetry between the first optical fiber and the second optical fiber based on the first time difference and a second time difference between a first time of transmission by the first optical network device of the first optical signal and a second time of transmission by the first optical network device of the second optical signal.
Abstract:
A method generates, from an input data stream, multiple lanes of a physical coding sublayer (PCS) signal. The method converts the data stream to a sequence of bit blocks, and periodically inserts into the sequence of bit blocks an alignment marker (AM) group including multiple individual alignment markers for respective ones of the multiple lanes. The method adds security protection to each bit block according to a security protocol to produce a sequence of protected bit blocks, and modifies each AM group with security information to be used by the security protocol to remove the security protection added to the sequence of protected bit blocks. The method applies forward error correction to the sequence of protected bit blocks and the modified AM groups to produce forward error correction codewords, and produces the multiple lanes from the codewords. The method transmits the multiple lanes over an optical link.
Abstract:
An optical frame is received over an optical link within an optical network. The optical frame contains a payload of aggregated data, an alignment value, and a bit interleaved parity value. The content of the optical frame is aligned based on the alignment value. The bit interleaved parity value is monitored. In response to the monitoring, a transmission quality of the transmission link is determined.
Abstract:
In one embodiment an apparatus, method, and system is described, the embodiment an apparatus, method including receiving a stream of data frames at an input interface, the data frames one of including security frames, or being included in security frames, wherein the security frames include payload data, performing forward error correction on the data frames a forward error correction (FEC) decoder, buffering received data frames at a buffer and blanker engine and building a complete security frame of the received data frames, determining whether or not to suppress taking a consequent action based on a frequency of authentication errors at an authentication engine, wherein the consequent action to be taken or suppressed, when taken, is taken upon payload data of one or more security frames including a data frame upon which an authentication error occurred. Related apparatus, methods and systems are also described.
Abstract:
A first device receives a first container frame having a payload of a first length. The payload of the container frame includes multiple optical transport unit (OTU) frames, each of which includes an optical data unit (ODU) frame and a sequence of forward error correction (FEC) bits for the ODU frame. Each OTU frame is associated with a first sequence of error-identifying bits. The first device determines, for each OTU frame, a second sequence of error-identifying bits, and forms a second container frame including the OTU frames, the first sequences of error-identifying bits, and the second sequences of error-identifying bits. The first device transmits the second container frame to a second device.
Abstract:
A method of measuring lengths of optical fibers on forward and return paths is provided in order to synchronize clocks of optical nodes connected by asymmetrical optical fiber paths. The method includes calculating, by a first optical network device, a first propagation delay of a first optical signal transmitted at a first wavelength on a first optical fiber to the first optical network device from a second optical network device and a second propagation delay of a second optical signal transmitted at a second wavelength on the first optical fiber to the first optical network device from the second optical network device. The second wavelength is different from the first wavelength. The method further includes determining, by the first optical network device, a first length of the first optical fiber based on the first propagation delay and the second propagation delay.
Abstract:
An optical system is provided that converts optical signals received over an optical trunk from a first optical switch to client optical signals intended for a second optical switch. The first and second optical switches operate in accordance with a Fibre Channel (FC) protocol. An interruption of the optical signals on the optical trunk is detected. Responsive to the interruption, a Not Operational State (NOS) message sent to the second optical switch is delayed so as to delay triggering of an FC link initialization in the second optical switch. While the NOS message is delayed, idle messages are sent to the second optical switch.
Abstract:
Techniques are described herein for enabling mapping of virtual lanes for data streams for transmission over an optical transport network (OTN). Line encoded data blocks of a first data stream are distributed at an endpoint device in an OTN. The line encoded data blocks of the first data stream are distributed across a plurality of second data streams such that the second data streams can be processed at a lower data rate than a data rate associated with the first data stream. A transcoding operation is performed on the data packets of each of the second data streams to generate transcoded data packets. The transcoded data packets are processed such that the transcoded data packets of each of the second data streams can be sent over the OTN at the lower data rate.
Abstract:
A data stream with a given data rate is distributed into a plurality of virtual lanes or streams, each with a lower data rate than the data stream. Virtual lanes permit the use of lower cost electronics at the optical-electrical conversion points. Security information is generated that includes a unique initialization vector. The security information is distributed or allocated across some or all of the of the virtual data streams in a virtual lane alignment marker in a portion of the alignment marker used to maintain direct current (DC) transmission balance, but that otherwise does not provide useful information.