Abstract:
A system for mapping terrain using at least a first machine and a second machine traveling along the terrain includes a controller for each of the respective first and second machines. Each respective machine includes a plurality of sensors in electrical communication with the controller of each respective machine. The controller is configured to receive, from the plurality of sensors located on each respective machine a plurality of machine parameters indicative of sensed operations of the respective machine as the respective machine travels along the terrain. The controller is further configured to determine, based on the received machine parameters for the respective machine, a geometry and a grade of a plurality of paths on the terrain along which the respective machine travels.
Abstract:
An excavation system is disclosed for use with an excavation machine having a work tool and with an IPCC. The excavation system may have a location device configured to generate a first signal indicative of a location of the excavation machine, a display, and at least one controller in communication with the location device and the display. The controller may be configured to receive a second signal indicative of a location of the IPCC, and to cause representations of the excavation machine and the IPCC to be simultaneously shown on the display based on the first and second signals. The at least one controller may also be configured to determine a swing radius of the work tool, and to selectively cause an indication of alignment between the IPCC and the swing radius to be shown on the display based on the first signal, the second signal, and the swing radius.
Abstract:
A guidance system and method for guiding excavation at an excavation site utilizes an excavating machine and an in-pit crusher and conveyer (IPCC) having a first hopper and a second hopper for receiving material. The guidance system can receive first hopper data associated with the first hopper and second hopper data associated with the second hopper and can process the first hopper data and second hopper data to determine a selected hopper for dispensing material. In an aspect, the guidance system can generate a guidance indication to display to the operator of the excavating machine that indicates the selected hopper.
Abstract:
The disclosure relates to method for executing project plan at worksite including project location. The method includes receiving, the project plan and analyzing, by the control unit, the project plan to determine excavation locations and dumping locations. The method further includes determining properties of material associated with the excavation locations and the dumping locations. The method includes determining, by the control unit, if properties of material associated with the excavation locations are matching with the properties of material present at the dumping locations, and if properties of materials present at the excavation locations are matching with the properties of materials present at the dumping locations, by combining materials present at the excavation locations with the materials present at the dumping locations. The method includes instructing the machine to excavate materials.
Abstract:
A computer-implemented method for automatically detecting a need for a ripping pass to be performed by a machine along a work surface is provided. The method may include monitoring one or more of machine parameters of the machine and profile parameters of the work surface, determining whether one or more predefined trigger conditions suggestive of the need for the ripping pass are met based on the machine parameters and the profile parameters, and generating a ripping pass request if one or more of the trigger conditions are satisfied.
Abstract:
A system for modifying a path of operation of a machine includes a position sensor and a controller. The controller stores the path of operation, receives a plurality of position signals as the work implement moves material along the path of operation, and determines the position of the work surface. The controller further determines an amount of material moved based at least in part upon the position of the work surface and modifies parameters used to determine a subsequent path of operation if the amount of material moved exceeds a predetermined amount.
Abstract:
A mapping system includes a pose sensor, a mapping sensor, a database defining a work surface, and a controller. The controller is configured to receive pose signals and determine the position and the orientation of the machine and receive mapping signals and determine a plurality of raw data points. The controller further determines a plurality of machine points defining a position of a portion of the machine and filters the plurality of raw data points based upon the plurality of machine points to define a plurality of filtered data points. The database may be updated with the plurality of filtered data points.
Abstract:
A control system for a vehicle sensor cleaning system is provided. The control system includes: a microcontroller configured to: receive inputs including at least one input from any one of the following sources: sensors, other controllers, and an operator; determine whether a signal to actuate a cleaning system for a sensor should be generated; analyze whether the signal should be delayed; sending an actuating signal to a sensor cleaning system if the controller determines that predetermined cleaning criteria are met and delays sending the actuating signal if the controller determines delay criteria are met. A method of controlling a sensor washing system may also be provided. The method includes: inputting signals from at least two sensors into a controller; weighing the inputted signals, wherein one of the signals is associated with a location of the vehicle on which the sensor washing system is located; determining whether to send a signal to actuate a sensor cleaner depending upon the weighing of the inputted signals; and sending a signal to the sensor cleaner to clean a sensor.
Abstract:
A system includes a position sensing system for determining a position of a machine and a work implement configured to engage material to form a raised contour. A controller determines a plurality of positions of the machine as the machine moves about the work site and the work implement forms the raised contour, determines a plurality of reference positions along an edge of the raised contour as the work implement forms the raised contour, and generates a map of the edge of the raised contour based upon the plurality of reference positions.
Abstract:
A control system for a machine is disclosed. The system includes a ripper sensor associated with a ripper of the machine configured to generate a signal indicative of a position of the ripper. The system includes a steering command sensor associated with a steering control module of the machine. The steering command sensor is configured to generate a signal indicative of a steering command of the machine. The system further includes a controller configured to receive the signals indicative of the position of the ripper and the steering command of the machine. The controller is configured to execute an action based on the engaged state of the ripper and the steering command of the machine.