Abstract:
Techniques associated with localizing data traffic for a time sensitive network within a virtualized radio access network are provided. In one embodiment, a method includes determining that a user equipment (UE) is associated with a time sensitive network; and localizing data traffic for the UE within a virtualized radio access network based on determining that the data traffic for the UE can be localized at one centralized user plane component of the virtualized radio access network for the time sensitive network. The data traffic can be Layer-2 data traffic or unstructured data traffic.
Abstract:
The present disclosure is directed at systems, methods and media for relieving RAN congestion in a core network. In some embodiments, RAN congestion information is reported from user equipment to a packet data gateway (PGW) through an eNodeB and a software gateway. The PGW can aggregate the RAN congestion information and periodically notify other network nodes, for example, a PCRF, about the aggregate congestion in a network. By aggregating RAN congestion information, the PGW can substantially reduce the signaling required to report RAN congestion in the core network.
Abstract:
The present disclosure includes gateways and methods for node selection of virtual network nodes in virtual evolved packet core networks. The methods include receiving, at a gateway from an evolved Node B (eNodeB), an attach request for a user equipment (UE), and determining a network selection hint corresponding to the received attach request, where the network selection hint is used for determining a virtual network node for selection in a mobile cloud network. The methods further include determining a domain name for establishing a network connection based at least in part on the network selection hint, where the selected domain name is associated with a virtual network node in the mobile cloud network. The methods also include selecting a virtual network node associated with the determined domain name, and establishing a network session to the selected virtual network node.
Abstract:
A method for location reporting at a charging area level granularity is provided. The method includes detecting at a mobility management entity (MME) a transition of a user equipment (UE) from a first cell to a second cell to obtain at least a second cell identifier. The method also includes determining at the MME whether the detected UE transition constitutes a transition from a first charging area to a second charging area using the second cell identifier by comparing the second cell identifier to a charging area configuration. A charging area includes a plurality of cells that are served by at least one eNodeB. The method further includes providing to a policy server a report of the determined UE transition, if it is determined that the detected UE transition constitutes a transition from the first charging area to the second charging area.
Abstract:
A method for location reporting at a charging area level granularity is provided. The method includes detecting at a mobility management entity (MME) a transition of a user equipment (UE) from a first cell to a second cell to obtain at least a second cell identifier. The method also includes determining at the MME whether the detected UE transition constitutes a transition from a first charging area to a second charging area using the second cell identifier by comparing the second cell identifier to a charging area configuration. A charging area includes a plurality of cells that are served by at least one eNodeB. The method further includes providing to a policy server a report of the determined UE transition, if it is determined that the detected UE transition constitutes a transition from the first charging area to the second charging area.
Abstract:
Data flow mobility to a user equipment may be provided. An access routing rule may be received at the user equipment. The access routing rule may include a plurality of packet filters and at least one target access corresponding to each of the plurality of packet filters. A first data packet to be routed may be received at the user equipment. A first packet filter associated with the first data packet may be determined. A first target access corresponding to the first packet filter may be determined from the access routing rule. The first data packet may be routed through the first target access.
Abstract:
In one embodiment, a client device queries a location server using a client-selected interface for content retrieval from a content distribution network (CDN), and receives a location attribute from the location server based on a location of the client device. The client device then presents the location attribute to a CDN selector within a first content retrieval request, and may receive a redirection from the CDN selector to a selected content source based on the location attribute. As such, the client device may then initiate a second content retrieval request to the selected content source. In another embodiment, a CDN selector receives a content retrieval request from a client device, and determines that the content retrieval request contains a location attribute indicating a location of the client device. Based on the location attribute, the CDN selector selects a content source, and redirects the client device to the selected content source.
Abstract:
Systems and method are provided that allow a mobile device to communicate over multiple access technologies at the same time, including a cellular access technology, such as LTE, and via an untrusted WLAN access. The untrusted access is initiated via internet key exchange. The mobile device uses the same IP address over both access technologies.
Abstract:
A method for mobile management entity (MME) selection includes receiving at a base transceiver station (BTS) a message from each of multiple MMEs including information for advertising functionalities of each of the MMEs. The functionalities include at least one type of communications session supported by each of the MMEs. The method also includes receiving at the BTS a message from a user equipment (UE) to request for a communications session. The request message includes session type information indicating a type of session requested by the UE. At least one of the MMEs is capable of serving the requested type of session. The method further includes generating a list of candidate MMEs capable of serving the requested type of communications session from the MMEs by matching the session type information with the capability information, and selecting a serving MME from the list based on the information relating to the advertised functionalities.
Abstract:
Systems and method are provided that allow a mobile device to communicate over multiple access technologies at the same time, including a cellular access technology, such as LTE, and via an untrusted WLAN access. The untrusted access is initiated via internet key exchange. The mobile device uses the same IP address over both access technologies.