Abstract:
Interpretive meta-instructions are used, at a connected vehicle access system (CVAS) device, to implement various RKE protocols by: receiving an RKE-protocol-specific meta-instruction that has been generated by a back-end server; generating an RKE telegram based on the RKE-protocol-specific meta-instruction; and transmitting the RKE telegram to a vehicle. The meta-instruction may include: a device configuration that specifies a set of RF parameters of a CVAS-device transceiver; a template telegram that contains a first set of data fields with data values from the back-end server and that contains a second set of data fields for which data values will be generated and inserted at the CVAS device; and localization-processing commands containing instructions for modifying the second set of data fields of the template telegram.
Abstract:
A key fob simulator for sending actuation command to a vehicle is discussed. The key fob has memory buffers, processors, and a transceiver that uses wireless communications to communicate with a backend cloud-based system. A RF transmitter of the key fob can transmit RF signals to Remote Keyless Entry (RKE) module of the vehicle. A mapping module includes a map-calculating circuit to calculate map coordinates of the key fob. A security module can receive a rolling security key of the RKE module of the vehicle. The key fob includes buttons that can be pushed by a user of the key fob to generate actuation commands by the security module. Using the RF transmitter, an actuation command and the rolling security key can be sent from security module to the RKE module of the vehicle. The RKE module then executes the actuation command after validating the rolling security key.
Abstract:
A key fob simulator for sending actuation command to a vehicle is discussed. The key fob has memory buffers, processors, and a transceiver that uses wireless communications to communicate with a backend cloud-based system. A RF transmitter of the key fob can transmit RF signals to Remote Keyless Entry (RKE) module of the vehicle. A mapping module includes a map-calculating circuit to calculate map coordinates of the key fob. A security module can receive a rolling security key of the RKE module of the vehicle. The key fob includes buttons that can be pushed by a user of the key fob to generate actuation commands by the security module. Using the RF transmitter, an actuation command and the rolling security key can be sent from security module to the RKE module of the vehicle. The RKE module then executes the actuation command after validating the rolling security key.
Abstract:
A cloud based package transfer system is discussed that has a cloud based package-exchange-service hosted on a cloud based provider site. The cloud based package-exchange-service supplies servers and databases of retail websites with information regarding services for package exchange available to customers and their associated vehicles. The information enables a retail website to present a checkbox, the presented checkbox enables a customer at a checkout point of the purchase from the retail website to select an alternative package delivery option of delivering the purchased products to a target vehicle of the customer. The package-exchange-service receives purchase information from the retail websites and use purchase information to create database records for completed delivery operations. The package-exchange-service sets up the package delivery operation and implements a financial model that use the database records to calculate financial transactions between the package-exchange-service and the retail websites.
Abstract:
A Bluetooth enabled Smartphone may be used for both access control and start authorization in a secure and safe way, and embodiments are backward-compatible with conventional vehicle access and start systems. A smart phone acts as an intermediary authorization device to a code generator which effectively resembles a car key that is installed in a vehicle. A Bluetooth transceiver and the code generator—and, optionally, for the retrofit solution, an RF/LF transceiver—are added to the vehicle. The Bluetooth transceiver communicates with the smart phone. The code generator communicates with electronic control units in the vehicle that control access, immobilization, and engine start. The communication may happen via a wired connection or, in the case of the retrofit solution, via an RF/LF transceiver that mimics an additional car key programmed to the vehicle.
Abstract:
A Bluetooth enabled Smartphone may be used for both access control and start authorization in a secure and safe way, and embodiments are backward-compatible with conventional vehicle access and start systems. A smart phone acts as an intermediary authorization device to a code generator which effectively resembles a car key that is installed in a vehicle. A Bluetooth transceiver and the code generator—and, optionally, for the retrofit solution, an RF/LF transceiver—are added to the vehicle. The Bluetooth transceiver communicates with the smart phone. The code generator communicates with electronic control units in the vehicle that control access, immobilization, and engine start. The communication may happen via a wired connection or, in the case of the retrofit solution, via an RF/LF transceiver that mimics an additional car key programmed to the vehicle.
Abstract:
A method to learn and then pair with a pre-installed access control system of a vehicle is discussed. Communication is exchanged between the access control system and a backend cloud-based system. Required data of the access control system including its particular authentication code is extracted by a learning device. A vehicle matching data is sent to the backend cloud-based system and the vehicle is registered with the backend cloud-based system. The learning device is registered to the access control system in accordance with learning procedures implemented in the vehicle as remote entry key. The learning device is coupled to a Radio Frequency signal transmitter that has Application-Specific Integrated Circuits to generate stable RF signals at multiple frequency wavelengths. Registration of learning device includes, receiving a first access control telegram message, transmitting the first access control telegram message to the access control system, pairing the learning device with the access control system.
Abstract:
Interpretive meta-instructions are used, at a connected vehicle access system (CVAS) device, to implement various RKE protocols by: receiving an RKE-protocol-specific meta-instruction that has been generated by a back-end server; generating an RKE telegram based on the RKE-protocol-specific meta-instruction; and transmitting the RKE telegram to a vehicle. The meta-instruction may include: a device configuration that specifies a set of RF parameters of a CVAS-device transceiver; a template telegram that contains a first set of data fields with data values from the back-end server and that contains a second set of data fields for which data values will be generated and inserted at the CVAS device; and localization-processing commands containing instructions for modifying the second set of data fields of the template telegram.
Abstract:
A method to learn and then pair with a pre-installed access control system of a vehicle is discussed. Communication is exchanged between the access control system and a backend cloud-based system. Required data of the access control system including its particular authentication code is extracted by a learning device. A vehicle matching data is sent to the backend cloud-based system and the vehicle is registered with the backend cloud-based system. The learning device is registered to the access control system in accordance with learning procedures implemented in the vehicle as remote entry key. The learning device is coupled to a Radio Frequency signal transmitter that has Application-Specific Integrated Circuits to generate stable RF signals at multiple frequency wavelengths. Registration of learning device includes, receiving a first access control telegram message, transmitting the first access control telegram message to the access control system, pairing the learning device with the access control system.
Abstract:
A method to learn and then pair with a pre-installed access control system of a vehicle is discussed. Communication is exchanged between the access control system and a backend cloud-based system. Required data of the access control system including its particular authentication code is extracted by a learning device. A vehicle matching data is sent to the backend cloud-based system and the vehicle is registered with the backend cloud-based system. The learning device is registered to the access control system in accordance with learning procedures implemented in the vehicle as remote entry key. The learning device is coupled to a Radio Frequency signal transmitter that has Application-Specific Integrated Circuits to generate stable RF signals at multiple frequency wavelengths. Registration of learning device includes, receiving a first access control telegram message, transmitting the first access control telegram message to the access control system, pairing the learning device with the access control system.