Abstract:
Solid state light emitting apparatuses include blue LEDs (including but not limited to a combination of short wavelength and long wavelength blue LEDs) to stimulate green lumiphors, with supplemental emissions by either red lumiphors and/or red solid state light emitters, to provide aggregate emissions with high S/P ratio (e.g., at least 1.95) and favorably high color rendering values (e.g., 85 or greater), preferably in combination with high brightness and high luminous efficacy. In certain embodiments, a solid state light emitting apparatus may be devoid of a LED having a peak wavelength of from 470-599 nm and/or devoid of lumiphors peak wavelengths in the yellow range. Multiple LEDs may be arranged in an emitter package.
Abstract:
Solid state light emitting apparatuses include blue LEDs (e.g., including short wavelength and long wavelength blue LEDs in combination) to stimulate green lumiphors, with supplemental emissions by red lumiphors and/or red solid state light emitters, to provide aggregate emissions with high S/P ratio (e.g., ≧1.95) and high color rendering values (e.g., ≧85), preferably in combination with high brightness and high luminous efficacy. In certain embodiments, a light emitting apparatus may be devoid of a LED having a peak wavelength of from 470-599 nm and/or devoid of lumiphors with peak wavelengths in the yellow range. Multiple LEDs may be arranged in an emitter package. A fabrication method includes mounting multiple solid state emitters (e.g., with a first blue and a second red emitter) to a common substrate, applying a stencil or mask over the second emitter, applying a lumiphoric material over the first emitter, and removing the stencil or mask.