Abstract:
A modularized multifunctional variable valve actuation system for use in a six-cylinder internal combustion engine. The system mainly comprises fuel supply modules (5 and 6), a phase limiting module (2), a mode selection module (22), control modules (3 and 4), a fuel transfer module (7), and a valve actuation module (1). The phase limiting module (2), with an extremely simple structure, implements a valve closing process not limited by operational phases of the fuel supply modules (5 and 6), and at the same time, requires only two fuel supply modules (5 and 6) and two two-way two-position valves (141, 142, and 143) to implement a continuously variable valve event, and requires only two fuel supply modules (5 and 6), two three-way two-position valves (191, 192, and 193), and one two-way two-position valve (141, 142, and 143) to implement a fully variable valve event, thus greatly reducing costs. The mode selection module (22) implements flexible conversion of an actuation mode and a braking mode of an internal combustion engine. Components of the system are functionally independent, modules are selected on the basis of requirements such as a gas distribution mode, the flexibility of valve operations, and the presence or absence of the braking mode, and the need for altering other modules is obviated. Thus, the system has a great suitability and a wide range of applications.
Abstract:
A combustion chamber of diesel engine. The diesel engine includes a cylinder head, a cylinder sleeve, and a piston. The cylinder head, the cylinder sleeve, and the piston form the combustion chamber. The combustion chamber includes a headspace; a central part; and a collision belt. The collision belt includes a collision surface, an upper guide surface, and a lower guide surface. The collision belt is configured to connect the headspace and the central part. The collision surface is an inclined surface, a convex surface, or a concave surface. The first tapered surface includes a second inclined surface, a second curved surface, and a third inclined surface; the second tapered surface includes a fourth inclined surface, a third curved surface, and a second concave surface; the first curved surface includes a second convex surface and a third concave surface.
Abstract:
A particulate trap filter body has asymmetrical channels. The cross-sectional shape of the asymmetrical channel structure includes a combination of hexagonal, square and triangular shapes. The hexagonal channel and the triangular channel act as inlet channel, and the square channel acts as outlet channel. Compared with the traditional symmetrical filter body structure, the inlet channel volume and filter body wall area can be effectively increased by more than 30%, which means that with capturing the same amount of particles, the particle cake layer formed on the wall surface is thinner. The limiting carbon load of the new channel structure is increased by more than 30%, having a very positive effect on reducing the regeneration frequency and prolonging the service life of the trap.
Abstract:
A diesel combustion system including a piston, an annular impinging block, and a combustion chamber. The combustion chamber is divided by the annular impinging block into an upper chamber and a lower chamber. The annular impinging block includes a lower guide surface that is adjacent to the lower chamber and that extends from a trough line connected to the piston to a crest line. The ratios among the inner diameter of the top of the piston, the outer diameter of the top of the piston, the diameter of the trough line, and the diameter of the crest line define the shape of the combustion chamber which leads to increased rate of combustion, reduced soot emission, and increased fuel efficiency.