Abstract:
A stator for a rotating electric machine has a stator core provided with a plurality of slots arranged in a circumferential direction of the stator core, and a stator winding that is wound around the slots.The stator winding is configured of a plurality of covered conductor linear portions. The covered conductor linear portions are each provided with an exposed portion formed on an end. The plurality of covered conductor linear portions are each joined to another covered conductor linear portion at the exposed portion, and the conductor joined portion is covered by an insulator at least in a range that includes an end portion of the insulation cover. The insulation cover covers the conductor, in an adhered state there to, and has a low-adhesion portion that that is either adhesive-free or has a lower adhesive strength than other parts on the conductor and is distanced from an end portion.
Abstract:
A stator includes a stator core having a plurality of slots arranged in a circumferential direction and a stator coil formed by wave-winding continuous coil wires on the stator core. Each of the continuous coil wires has in-slot portions received in the slots and turn portions each of which connects, on the outside of the slots, one pair of the in-slot portions. Each of the continuous coil wires has, at root parts of the turn portions respectively connected with ends of the in-slot portions, first crank portions that are radially bent. An amount of radial bending of the first crank portions is set to be half of a radial width of the in-slot portions.
Abstract:
A rotating electric machine includes a rotor, a stator, a cooling device and a pair of cooling liquid collection tanks. The stator includes an annular stator core and a stator coil. The stator core is disposed radially outside the rotor so as to surround the rotor. The stator coil is mounted on the stator core so that a pair of coil ends of the stator coil protrude axially outward respectively from opposite axial end faces of the stator core. The cooling device is configured to supply cooling liquid to vertically upper parts of the coil ends of the stator coil. Each of the cooling liquid collection tanks is arranged to surround a vertically lower part of a corresponding one of the coil ends so as to collect and temporarily reserve therein the cooling liquid moved from the upper part to the lower part of the corresponding coil end.
Abstract:
A stator includes a hollow cylindrical stator core and a stator coil formed of a plurality of electric conductor segments. Each of the electric conductor segments includes, at least, an in-slot portion received in a corresponding slot of the stator core and a protruding portion that protrudes from the in-slot portion outside of the corresponding slot. Each of the electric conductor segments also has an insulating coat covering its outer surface. For each intersecting pair of the protruding portions of the electric conductor segments, at least one of the two protruding portions of the intersecting pair has an indentation formed in a side face thereof radially facing the other protruding portion at the intersection of the two protruding portions. Further, a thickness of the insulating coats at the indentations is substantially equal to a thickness of the insulating coats at the in-slot portions of the electric conductor segments.
Abstract:
A rotary electric machine includes a cylindrical portion. In the cylindrical portion, a coolant passage having annular shape is formed to allow the coolant to flow therethrough. The coolant passage is formed meandering in the axial direction and the passage width of the coolant passage in a first end side in the radial direction is narrower than the passage width in the radial direction in the second end side. The coolant passage includes a circumferential passage in the first end side where the coolant flows in the circumferential direction. The circumferential passage is configured such that a passage opening area of an intermediate portion between an input portion in an upstream side of the coolant passage and an output portion in a downstream side of the coolant passage is expanded compared to those of the input portion and the output portion.
Abstract:
A stator includes a stator core having slots arranged in a circumferential direction and a stator coil formed by wave-winding continuous coil wires on the stator core. Each of the continuous coil wires has in-slot portions received in the slots and turn portions each of which connects, on the outside of the slots, one pair of the in-slot portions. The stator coil is formed, by spirally rolling a band-shaped coil wire bundle that is formed by bundling the continuous coil wires, into a cylindrical shape. In the coil wire bundle, the continuous coil wires are transposed at a plurality of locations. Moreover, in a range where the continuous coil wires extend in the circumferential direction of the stator core by one complete turn, at least one interval between adjacent transposition locations in the coil wire bundle is greater than or equal to the circumferential length of one turn portion.
Abstract:
A rotating electric machine includes a pair of electric conductors for forming a coil and a weld. Each of the electric conductors has an end portion with an end surface. The weld is formed between the end portions of the electric conductors at the end surfaces of the end portions. Moreover, the end portions of the electric conductors are arranged so that parts of the end portions of the electric conductors adjoin each other. At least one of the end portions of the electric conductors has at least one slit formed therein to divide the end surface of the end portion into a plurality of sections. The weld is formed to cover, at least, the adjoining parts of the end portions of the electric conductors and the at least one slit.
Abstract:
Disclosed are a core sheet and a manufacturing method thereof. The core sheet has an annular core back portion and a plurality of tooth portions extending from the core back portion toward a radial center thereof. The core sheet is obtained by performing a blanking step, a rolling step and a removing step. In the removing step, an insulation coating, which is on a region of a grain-oriented magnetic steel sheet for forming a band-shaped core back portion, on a band-shaped core back portion of a sheet piece or on the core back portion of the core sheet, is at least partially removed.
Abstract:
A rotor of a rotating electrical machine includes a field core having a boss portion, multiple disc portions, and multiple claw-shaped magnetic pole portions; a field winding wound around an outer peripheral side of the boss portion to generate magnetomotive force by power application; and a tubular member arranged so as to cover the outer periphery of the claw-shaped magnetic pole portions. The tubular member includes multiple steel plates stacked in an axial direction, and is configured such that an inner diameter in a steady state is smaller than the outer diameter of the claw-shaped magnetic pole portions.
Abstract:
A rotating electric machine includes a weld formed by welding end portions of a pair of electric conductors for forming a coil and a weld-insulating member that covers, at least, a surface of the weld. The weld has an uneven portion formed on at least part of the surface thereof. The uneven portion is constituted of a plurality of annular recesses and a plurality of annular protrusions. The annular recesses are formed alternately and continuously with the annular protrusions.