Abstract:
A dispensing system includes a motor driven air pump having an air inlet and an air outlet, and a dispensing device. The dispensing device is releasably connected to the air pump. The dispensing device includes an air connector connected to the air outlet of the pump, a mixture outlet, a product inlet, and a product uptake system connected to the air connector, the mixture outlet, and the product inlet. The dispensing system includes a product container for a product to be dispensed. The product container is connected to the product inlet. The product container is integrated in the dispensing device. The product uptake system may include an ejector for sucking product from the container and/or a container air inlet for pressurizing the container.
Abstract:
A composite container, comprising a form-retaining outer container comprising a neck, and a flexible inner container, the inner container comprising a dispensing opening mounted in the neck of the outer container is presented. The inner container is connected over a part of its surface area near the dispensing opening to a corresponding surface area of the inside of the outer container near the neck, via adhesive or weld connection, such that there remains a portion of the inner container not connected to the sidewall of the outer container. In response to an overpressure developed by a displacing medium introduced between the inner container and the outer container, a portion of the inner container that is not connected to the outer container moves at least one of: (i) towards the dispensing opening and (ii) within, the portion of the inner container that is connected to the outer container.
Abstract:
A dispensing system includes a motor driven air pump having an air inlet and an air outlet, and a dispensing device. The dispensing device is releasably connected to the air pump. The dispensing device includes an air connector connected to the air outlet of the pump, a mixture outlet, a product inlet, and a product uptake system connected to the air connector, the mixture outlet, and the product inlet. The dispensing system includes a product container for a product to be dispensed. The product container is connected to the product inlet. The product container is integrated in the dispensing device. The product uptake system may include an ejector for sucking product from the container and/or a container air inlet for pressurizing the container.
Abstract:
A gas-filled resilient body and uses thereof are described. The gas-filled resilient body may be used as a valve member, as a spring or as a gas-propelled dispenser.
Abstract:
A liquid dispensing system includes at least one container for storing the liquid to be dispensed, the at least one container having a neck defining a fill opening for the liquid. The system includes a liquid dispensing device releasably connectable to the at least one container, an exchangeable cartridge for an additive to be mixed with the stored liquid, where the cartridge is accommodated in the neck, and a piercing member for opening the cartridge. The cartridge includes a one-piece hollow body filled with the additive and with a pressurized gas, and the piercing member is arranged to pierce a wall of the hollow body. A method of dispensing a liquid by using the liquid dispensing system, and a cartridge for use in the liquid dispensing system and/or method.
Abstract:
A composite container, comprising a form-retaining outer container and a flexible inner container is presented. The inner container comprises a dispensing opening and can be mounted in a neck of the outer container, and the inner container is further connected to the outer container by an adhesive or weld connection over a portion of its periphery. The adhesive or weld connection can take the form of a ring adhesion or weld extending transversely to a central longitudinal axis of the container, or can cover the entire surface area of a defined portion of the respective inner container and outer container walls, such as, for example, the upper one-half of the container. The adhesion or weld can be substantially permanent, or alternatively, the adhesive or weld connection can be adapted to detach in controlled manner under the influence of pressures occurring in the container. Additionally, a method for manufacturing such a composite container is also presented, including forming a form-retaining outer container pre-form comprising a neck, forming a flexible inner container pre-form comprising a dispensing opening, inserting the inner container pre-form into the outer container pre-form and fixing said inner container pre-form to the neck of the outer-container pre-form. If the two containers are to be connected by adhesive, then prior to inserting the inner container pre-form into the outer container pre-form, a glue or adhesive can be applied either to the outer surface of the inner container pre-form or to the inner surface of the outer container pre-form, defining a portion of the surface area of the inner and outer containers where they will be connected. Once the two pre-forms are assembled, the composite container can be blown to full size under significant pressures, and the inner container becomes connected to the outer container over the defined portion of their periphery (e.g., their upper halves) by the adhesive spreading under such pressure, or by welding, into an air-tight seal In exemplary embodiments of the present invention, the remaining portion of the inner container pre-form can be coated with an anti-stick coating prior to insertion into the outer container pre-form, so as to facilitate motion of the remaining portion of the flexible inner container relative to the outer container. In exemplary embodiments of the present invention, in operation, under pressure supplied by a displacing medium, the non-adhering portion of the inner container moves upwards within the outer container in a piston-like motion so as to dispense a product provided inside it, until it has completely folded on itself so that it its inner wall fully contacts the inner wall of the adhering portion of the inner container.
Abstract:
A composite container, comprising a form-retaining outer container and a flexible inner container is presented. The inner container comprises a dispensing opening and can be mounted in a neck of the outer container, and the inner container is further connected to the outer container by an adhesive or weld connection over a portion of its periphery. The adhesive or weld connection can take the form of a ring adhesion or weld extending transversely to a central longitudinal axis of the container, or can cover the entire surface area of a defined portion of the respective inner container and outer container walls, such as, for example, the upper one-half of the container. The adhesion or weld can be substantially permanent, or alternatively, the adhesive or weld connection can be adapted to detach in controlled manner under the influence of pressures occurring in the container. Additionally, a method for manufacturing such a composite container is also presented, including forming a form-retaining outer container pre-form comprising a neck, forming a flexible inner container pre-form comprising a dispensing opening, inserting the inner container pre-form into the outer container pre-form and fixing said inner container pre-form to the neck of the outer-container pre-form. If the two containers are to be connected by adhesive, then prior to inserting the inner container pre-form into the outer container pre-form, a glue or adhesive can be applied either to the outer surface of the inner container pre-form or to the inner surface of the outer container pre-form, defining a portion of the surface area of the inner and outer containers where they will be connected. Once the two pre-forms are assembled, the composite container can be blown to full size under significant pressures, and the inner container becomes connected to the outer container over the defined portion of their periphery (e.g., their upper halves) by the adhesive spreading under such pressure, or by welding, into an air-tight seal. In exemplary embodiments of the present invention, the remaining portion of the inner container pre-form can be coated with an anti-stick coating prior to insertion into the outer container pre-form, so as to facilitate motion of the remaining portion of the flexible inner container relative to the outer container. In exemplary embodiments of the present invention, in operation, under pressure supplied by a displacing medium, the non-adhering portion of the inner container moves upwards within the outer container in a piston-like motion so as to dispense a product provided inside it, until it has completely folded on itself so that it its inner wall fully contacts the inner wall of the adhering portion of the inner container.