Abstract:
The inventive concept shows the embodiment of t-switch which is a MIT 3-terminal device based on a Hole-driven MIT theory and a technology for removing an ESD noise signal which is one of applications of the t-switch. The t-switch includes three terminals of Inlet, Outlet and Control, and a metal-insulator transition (MIT) occurs at an Outlet layer by a current flowing through the Control terminal. In the t-switch, a high resistor is connected to the Control terminal and thereby an ESD noise signal of high voltage flows through the Inlet-Outlet without damaging the device.
Abstract:
Provided is a thermoelectric device including a first electrode, a substrate electrically connected to the first electrode, a thin film on the substrate, and a second electrode on the thin film. The substrate and the thin film may be configured to exhibit a metallic property at a temperature over a critical temperature, thereby having a thermoelectric power of the device that is higher than that of a semiconductor junction.
Abstract:
Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.
Abstract:
The present invention relates to a current sensor which measures alternating electromagnetic wave and a current breaker using the same, and the current sensor for alternating current is characterized in that it includes a sensor part arranged at a separation distance from the power wire through which alternating current is flowing; and a means of detecting alternating current by measuring the electromagnetic wave generated across the above sensor part by the electromotive force induced by the alternating current flowing through the above power wire, and in that the above means of detecting alternating current includes an amplifier.
Abstract:
Provided is a metal-insulator transition (MIT) transistor system including an MIT critical current supply device allowing MIT to occur between a control terminal and an outlet terminal of an MIT transistor for easily and conveniently driving the MIT transistor. A current supplier according to the present invention provides a critical current for allowing an MIT phenomenon to occur between the control terminal and the output terminal of the MIT transistor.
Abstract:
The present disclosure discloses an electrical switchgear configured to control an electro-magnet by using the electro-magnet, a critical temperature device, and an electro-magnet control unit without using a bimetal and a mechanical contact. The electro-magnet switches power applied through a power line in response to a flow of control current to a power device connected to a load side. In a critical temperature device, an output current value varies when a temperature of a heating wire, which is connected to the power line, exceeds a critical temperature by supply current flowing to the power device. An electro-magnet control unit, which is realizable with an SCR, allows a flow of control current of the electro-magnet to be generated or cut off in response to the output current value of the critical temperature device.
Abstract:
The inventive concept shows the embodiment of t-switch which is a MIT 3-terminal device based on a Hole-driven MIT theory and a technology for removing an ESD noise signal which is one of applications of the t-switch. The t-switch includes three terminals of Inlet, Outlet and Control, and a metal-insulator transition (MIT) occurs at an Outlet layer by a current flowing through the Control terminal. In the t-switch, a high resistor is connected to the Control terminal and thereby an ESD noise signal of high voltage flows through the Inlet-Outlet without damaging the device.
Abstract:
Disclosed is a multipurpose alarm apparatus which includes a smoke sensing unit configured to sense a smoke using a first sensor and a second sensor, each of the first and second sensors including a temperature-sensitive smoke sensor portion disposed between a first electrode and a second electrode; a smoke level measuring unit configured to generate a smoke level measurement signal by comparing a difference between first and second smoke detection signals from the first and second sensors with a reference signal; and a sensing control unit configured to generate a fire alarm signal when the smoke level measurement signal corresponds to a fire generation condition.
Abstract:
Provided is a monolithic metal-insulator transition device. The monolithic metal-insulator transition device includes a substrate including a driving region and a switching region, first and second source/drain regions on the driving region, a gate electrode between the first and second source/drain regions, an inlet well region formed adjacent to an upper surface of the substrate on the switching region, a control well region having a different conductivity type from the inlet well region between the inlet well region and a lower surface of the substrate, a first wiring electrically connecting the first source/drain region and the control well region, and a second wiring electrically connecting the second source/drain region and the inlet well region.
Abstract:
Electromagnetic sensor of an oxygen-rich vanadium oxide and the system thereof are provided. The electromagnetic sensor of an oxygen-rich vanadium oxide according the embodiment of the present invention comprises; the first substance layer containing silicon doped with an n-type dopant; and the second substance layer arranged on the first substance layer, and containing a vanadium oxide represented by the molecular formula of VxOy. Dopant concentration of the first substance layer can be higher than 1.0×10′5 cm−3 and lower than 1.0×1019 cm−3, while the ratio of y to x in the molecular formula can be larger than 2 and smaller than 2.5.