Abstract:
The present invention provides novel and improved protein purification processes which incorporate certain types of carbonaceous materials and result in effective and selective removal of certain undesirable impurities without adversely effecting the yield of the desired protein product.
Abstract:
The present invention provides novel and improved protein purification processes which incorporate certain types of carbonaceous materials and result in effective and selective removal of certain undesirable impurities without adversely affecting the yield of the desired protein product.
Abstract:
The present invention provides novel and improved protein purification processes which incorporate certain types of carbonaceous materials and result in effective and selective removal of certain undesirable impurities without adversely affecting the yield of the desired protein product.
Abstract:
The present invention provides novel and improved protein purification processes which incorporate certain types of carbonaceous materials and result in effective and selective removal of certain undesirable impurities without adversely effecting the yield of the desired protein product.
Abstract:
The present invention is to a prefilter for affinity chromatography columns. The prefilter, positioned upstream of the column inlet, reduces the presence of non-specific binding (NSB) species that enter the system, thereby extending the yield, capacity and lifetime of the column. Suitable agents include but are not limited to hydrophobic entities; lipophilic entities; activated carbon; charged cation or anion entities; ligands; particles such as fumed silica, glass, controlled pore glass or derivitized version of each; silica or silicates; and combinations thereof. The material(s) can be incorporated into a variety of media such as fibers, beads, membranes and the like and then incorporated into a variety of device designs including lenticular pads, depth filters, bead containing columns, spiral wound devices, TFF devices and the like.