Abstract:
Provided is a disaster management system including a plurality of fire receivers configured to receive fire data including sensing data and event data from a plurality of fire-fighting facilities and configure the fire data as fire data having different data structures and a disaster information management server configured to configure the fire data having different data structures received from the plurality of fire receivers as standardized standard data and transmit the configured standard data to an external server.
Abstract:
A method of measuring inter-device relative coordinates performed by a first device communicating with at least one second device belonging to a group to which the first device belongs includes measuring a range between the first device and the second device through communication with the second device; receiving range information between a plurality of second devices from the second device; calculating a plurality of solutions for inter-device relative coordinates using information about the range between the first device and the second device and the range information between the plurality of second devices; and deducing a true solution among the plurality of solutions for the inter-device relative coordinates using coordinates of each of the first device and the at least one second device with respect to a reference origin that is calculated using a Pedestrian Dead Reckoning (PDR) technique.
Abstract:
Provided is an apparatus for controlling supply of power to a radio frequency identification (RFID) tag, in which an internal large-capacity memory of an RFID tag is physically divided into a plurality of memory blocks, and power is selectively supplied to each of the divided plurality of memory blocks depending on the case, thereby reducing power consumption of the RFID tag. The apparatus includes a first memory configured to store information which is used to perform an inventory operation with an RFID reader, a second memory configured to store a file and data associated with the RFID tag, and a control unit configured to perform the inventory operation with the RFID reader by using the inventory information stored in the first memory, and when a command for accessing the second memory is received from the RFID reader, allow power to be supplied to the second memory.
Abstract:
Disclosed are an apparatus and a method for measuring a blood glucose level. In the blood glucose level measurement apparatus and method, the apparatus coupled to a patch with a microneedle formed in at least one area and configured to calculate a blood glucose level of a body fluid extracted from a user may calculate the blood glucose level by analyzing a reflected light beam reflected from the patch with a microneedle formed in a second area and correct the calculated blood glucose level of the user by analyzing data obtained by measuring a reflected light beam from a first area from which the body fluid is not extracted so as to measure a precise blood glucose level with an error being reduced in consideration of environmental factors influencing measurement.
Abstract:
Provided are a fire detection apparatus and method for analyzing a spectral distribution of secondary light generated as primary light is scattered or transmitted through smoke particles to distinguish between fire smoke generated due to an actual fire and living smoke generated in daily life, thereby reducing non-fire alarms. When smoke enters the inside of the fire detection apparatus (100) due to a fire, secondary light (150) scattered or transmitted through smoke particles (140) is incident on the light receiver (120). Upon receiving the secondary light (150), the light receiver (120) outputs a spectrum (170) of the secondary light (150). The fire identification unit (160) receives and analyzes the spectrum (170) of the secondary light (150) and identifies whether the smoke particles (140) are particles of living smoke or particles of fire smoke.
Abstract:
A communication method in a wireless communication system includes receiving, by a resonator unit of a first signal transfer apparatus, a wireless signal transmitted from a transmission apparatus, acquiring resonance energy from the wireless signal using at least one of a matcher unit and the resonator unit of the first signal transfer apparatus, transferring the wireless signal to one end of a transmission line via the matcher unit of the first signal transfer apparatus using the acquired resonance energy, transferring the wireless signal to a second signal transfer apparatus connected to an opposite end of the transmission line, and transmitting the wireless signal to a reception apparatus having a wireless link established with the second signal transfer apparatus using a matcher unit and a resonator unit of the second signal transfer apparatus.
Abstract:
A mobile ad-hoc routing apparatus includes a first communication module and a second communication module configured to transmit and receive data through a first communication band and a second communication band, respectively, a memory configured to store a program for transmitting and receiving the data, and a processor configured to execute the program stored in the memory, wherein when the program is executed, the processor receives first control information broadcast by one or more neighboring nodes via the first communication module and stores the first control information in the memory, wherein the first control information includes current position and communication status information of the neighboring node, the processor updates information on the neighboring node on the basis of the first control information, generates packet forwarding information which includes information on a node which currently allows packet data to be transmitted based on the updated information on the neighboring node, and stores the generated packet forwarding information in the memory, and the processor determines a subsequent node which allows the packet data to be transmitted to a destination node on the basis of the packet forwarding information and transmits the packet data to the subsequent node via the second communication module.
Abstract:
A wireless power transmitting apparatus converts rotational energy of an axle to electrical energy, transfers the electrical energy to a transmitting coil of the wireless power transmitting apparatus through a power transfer connection pin that connects the inside of the wheel and the outside of the wheel of a vehicle, and wirelessly transmits the electrical energy to the sensor using resonance between a transmitting coil of the wireless power transmitting apparatus and a receiving coil of the sensor in order to use it as a driving power source of a sensor that detects a state of a tire.
Abstract:
Provided are a multiwavelength photoelectric smoke detection apparatus and method, which reduce non-fire alerts by distinguishing smoke caused by actual fire occurrence and non-fire smoke occurring in daily life when a suspected fire event occurs. The multiwavelength photoelectric smoke detection apparatus includes a chamber in which a smoke inlet is formed, a light emitter for generating light with multiple wavelengths, a light receiver for detecting scattered light due to smoke particles, a controller for turning a light source of the light emitter on and off and detecting a scattered light signal from the light receiver, and a fire determination part for determining whether an amplitude of the detected scattered light signal exceeds a threshold value and generating an alarm.
Abstract:
The disclosure relates to a non-dispersive infrared (NDIR) gas sensor which detects the concentration of gas with a simple structure and method by manufacturing an optical waveguide with a gas-permeable polymer material instead of a conventional cavity or chamber type. An optical signal travels through the optical waveguide of gas-permeable polymer by total internal reflection, and the gas naturally penetrates the optical waveguide without the use of separate inlet and outlet openings, so that the optical signal and gas particles come into contact with each other within the optical waveguide. Since the optical signal detected by a photodetector at the other end of the optical waveguide after traveling while contacting the gas particles has properties changed according to the concentration of the gas which they have contacted in the optical waveguide, it is possible to measure the concentration of a specific gas from the detected optical signal.