Abstract:
An apparatus includes a first electrode and a second electrode positioned a distance from the first electrode. The second electrode is in electrical communication with the first electrode through at least a portion of a double strand deoxyribonucleic acid (DNA). The apparatus also includes a detector configured to detect a conductivity of the double strand DNA.
Abstract:
An article including a lignin derivative, where the lignin derivative includes a moiety derived from an antimicrobial compound. Also provided are methods of inhibiting microbial growth with an article including a lignin derivative.
Abstract:
A method for the quality control of dairy products is disclosed. The method includes scanning the surface of a dairy product test sample using a chromatic scanner system to generate a spectral pattern of reflected light intensities, which pattern is unique to the test sample. The spectral pattern from the test sample is compared with spectral patterns from one or more reference dairy products to provide an indication of test sample identify, quality and/or nutritional content.
Abstract:
Technologies are generally described for determination and analysis of an optical profile of a liquid-based material to implement real-time monitoring of a composition of the liquid-based material for quality control. An imaging sub-system may include a plurality of illumination sources configured to illuminate the liquid-based material with light, and one or more detectors. The detectors may be configured to detect light reflected from a first surface of the liquid-based material, light reflected from a second surface of the liquid-based material, and/or light transmitted through the first surface and the second surface of the liquid-based material in response to the illumination. An analytics sub-system coupled to the imaging sub-system may be configured to analyze the detected light to determine an optical profile of the liquid-based material, and monitor the optical profile in real-time to detect changes in the optical profile indicative of corresponding changes to a composition of the liquid-based material.
Abstract:
Methods, systems, and apparatuses, including computer programs encoded on computer-readable media, for receiving a first plurality of product identifiers associated with products purchased by a consumer to form a purchase record. Each of the first plurality of product identifiers are associated with a consumer identifier. A second plurality of product identifiers associated with products recycled by the consumer is received. The consumer identifier associated with the consumer is received. A record of recycled purchased products by the consumer is authenticated by querying the purchase record of the consumer for each of the second plurality of product identifiers. A record of recycling is authenticated when a product identifier in the second plurality of product identifiers matches a product identifier in the purchase record of the consumer.
Abstract:
Technologies are generally described for determination and analysis of an optical profile of a liquid-based material to implement real-time monitoring of a composition of the liquid-based material for quality control. An imaging sub-system may include a plurality of illumination sources configured to illuminate the liquid-based material with light, and one or more detectors. The detectors may be configured to detect light reflected from a first surface of the liquid-based material, light reflected from a second surface of the liquid-based material, and/or light transmitted through the first surface and the second surface of the liquid-based material in response to the illumination. An analytics sub-system coupled to the imaging sub-system may be configured to analyze the detected light to determine an optical profile of the liquid-based material, and monitor the optical profile in real-time to detect changes in the optical profile indicative of corresponding changes to a composition of the liquid-based material.
Abstract:
Disclosed are methods and systems for testing the effects of various morphogens and/or feeder cells on the differentiation of pluripotent cells. The assays described herein can be used for determining the optimum conditions that lead to differentiation of stem cells. Once the optimum conditions for stem cell differentiation are determined, such cells may be used in a variety of therapies.
Abstract:
Technologies are generally described for spectroscopic determination of one or more optical properties of a gemstone. An imaging device may include one or more light sources configured to illuminate one or more portions of the gemstone, and one or more photo detectors configured to detect reflected light from the portions of the gemstone in response to the illumination. An analysis module may be communicatively coupled to the imaging device, and configured to analyze the reflected light to determine the optical properties of the portions of the gemstone. The optical properties may include at least one of a clarity, color, fluorescence, birefringence, dichroism, and brilliance of the portions of the gemstone. In some examples, an optical fingerprint of the gemstone may be created based on one or more determined optical characteristics of the portions of the gemstone, where the optical fingerprint may uniquely identify the gemstone.
Abstract:
Paint configured to provide a hydrophilic paint surface comprising a paint base and a texture imprinting additive (TIA) that provides sacrificial particles upon drying of the paint. Loss of the sacrificial particles increases roughness and reduces the contact angle with water, providing a hydrophilic surface that is wettable and hence self-cleaning. Also described are specific types of TIA, methods of making the paint, methods of making a hydrophilic surface, and kits.
Abstract:
Cell culturing and tracking systems using an array of organic light emitting diodes (OLEDs) to illuminate cells and/or other particles in a cell chamber are described. Compared to conventional light sources, the OLED array consumes very little energy and emits a small amount of waste heat, so it may be disposed near or on the cell chamber. For instance, it can be printed on one side of the cell chamber itself. In addition, the OLED array may be patterned into pixels or sub-pixels (individual OLEDs), each of which is as small as or smaller than an individual cell or particle. Because the pixels are so small, OLED illumination can be used to acquire images with a spatial resolution equal to or better than the cell or particle cell. As a result, the OLED array can be used to track, monitor, identify, and manipulate individual cells within the cell culture.