Abstract:
According to the embodiments provided herein, a photovoltaic device can include a buffer layer adjacent to an absorber layer doped p-type with a group V dopant. The buffer layer can have a plurality of layers compatible with group V dopants.
Abstract:
According to the embodiments provided herein, a method for forming a photovoltaic device can include depositing a plurality of semiconductor layers. The plurality of semiconductor layers can include a doped layer that is doped with a group V dopant. The doped layer can include cadmium selenide or cadmium telluride. The method can include annealing the plurality of semiconductor layers to form an absorber layer.
Abstract:
Described herein is a photovoltaic module and method of manufacturing a photovoltaic module to isolate potentially stress-damaged portions of cells from non-stress-damaged portions thereof. The module has a plurality of columnar photovoltaic cells, and at least one isolation scribe at a first edge of an active area of the photovoltaic module and extending across a photovoltaic cell in a direction perpendicular to a length of the columnar cells, where the at least one isolation scribe is deep enough to electrically isolate portions of the photovoltaic cell on opposite sides of the at least one isolation scribe.
Abstract:
According to the embodiments provided herein, a method for forming a photovoltaic device can include depositing a plurality of semiconductor layers. The plurality of semiconductor layers can include a doped layer that is doped with a group V dopant. The doped layer can include cadmium selenide or cadmium telluride. The method can include annealing the plurality of semiconductor layers to form an absorber layer.
Abstract:
According to the embodiments provided herein, a method for forming a photovoltaic device can include depositing a plurality of semiconductor layers. The plurality of semiconductor layers can include a doped layer that is doped with a group V dopant. The doped layer can include cadmium selenide or cadmium telluride. The method can include annealing the plurality of semiconductor layers to form an absorber layer.
Abstract:
Photovoltaic devices (100) with type ll-VI semiconductor absorber materials (160) having p-type contact layers (180) are obtained by forming a ll-VI absorber layer over a substrate stack (113), wherein the type II material includes cadmium (Cd) and the type VI material includes tellurium (Te); contacting an alkaline wash fluid, comprising a hydroxide, to a second surface of the absorber layer to produce a Cd-rich surface, depositing a p-type contact layer (180) over the absorber layer (160), whereby the p-type contact layer is directly adjacent to the Cd-rich layer, and wherein the p-type contact layer comprises at least one of: PTAA, P3HT, poly-TPD, TFB, TTF-1, TF8-TAA, TIF8-TAA, SGT-407, PCDTBT, SpiroOMeTAD, anthracene-based HTM, polythiophene, semiconducting polymers, NiO, CuSCN, or Cui; and depositing a conductive layer (190) over the p-type contact layer.
Abstract:
According to the embodiments provided herein, a photovoltaic device can include a buffer layer adjacent to an absorber layer doped p-type with a group V dopant. The buffer layer can have a plurality of layers compatible with group V dopants.