摘要:
Described herein is an assembly of an integrated device and of a cap coupled to the integrated device; the integrated device is provided with at least a first and a second region to be fluidically accessed from outside, and the cap has an outer portion provided with at least a first and a second inlet port in fluid communication with the first and second regions. In particular, the first and second regions are arranged on a first outer face, or on respective adjacent outer faces, of the integrated device, and an interface structure is set between the integrated device and the outer portion of the cap, and is provided with a channel arrangement for routing the first and second regions towards the first and second inlets.
摘要:
Described herein is an assembly of an integrated device and of a cap coupled to the integrated device; the integrated device is provided with at least a first and a second region to be fluidically accessed from outside, and the cap has an outer portion provided with at least a first and a second inlet port in fluid communication with the first and second regions. In particular, the first and second regions are arranged on a first outer face, or on respective adjacent outer faces, of the integrated device, and an interface structure is set between the integrated device and the outer portion of the cap, and is provided with a channel arrangement for routing the first and second regions towards the first and second inlets.
摘要:
An embodiment of a photomultiplier device is formed by a base substrate of insulating organic material forming a plurality of conductive paths and carrying a plurality of chips of semiconductor material. Each chip integrates a plurality of photon detecting elements, such as Geiger-mode avalanche diodes, and is bonded on a first side of the base substrate. Couplings for photon-counting and image-reconstruction units are formed on a second side of the base substrate. The first side of the base substrate is covered with a transparent encapsulating layer of silicone resin, which, together with the base substrate, bestows stiffness on the photomultiplier device, preventing warpage, and covers and protects the chips.
摘要:
A method manufactures an electronic device comprising a MEMS device overmolded in a protective casing. The MEMS device includes an active surface wherein a portion of the MEMS device is integrated, and is sensitive, through a membrane, to chemical/physical variations of a fluid. Prior to the molding step, at least one resin layer is formed on at least one region overlying the active surface in correspondence with the membrane. After, at least one portion of at least one resin layer is removed from at least one region, so that in the region an opening is formed, through which the MEMS device is activated from the outside of the protective casing.
摘要:
A semiconductor package substrate suitable for supporting a damage-sensitive device and a package substrate core having an upper and a lower surface. At least one pair of metal layers coats the upper and lower surfaces of the package substrate core. One pair of solder mask layers coats the outer metal layers of the at least one pair of metal layers. A plurality of vias is formed across the package substrate core and the at least one pair of metal layers. Advantageously, the plurality of vias is substantially distributed according to a homogeneous pattern in an area that is to be covered by the damage-sensitive device. A method for the production of such semiconductor package substrate is also described.
摘要:
A semiconductor package substrate suitable for supporting a damage-sensitive device and a package substrate core having an upper and a lower surface. At least one pair of metal layers coats the upper and lower surfaces of the package substrate core. One pair of solder mask layers coats the outer metal layers of the at least one pair of metal layers. A plurality of vias is formed across the package substrate core and the at least one pair of metal layers. Advantageously, the plurality of vias is substantially distributed according to a homogeneous pattern in an area that is to be covered by the damage-sensitive device. A method for the production of such semiconductor package substrate is also described.
摘要:
A method manufactures an electronic device comprising a MEMS device overmolded in a protective casing. The MEMS device includes an active surface wherein a portion of the MEMS device is integrated, and is sensitive, through a membrane, to chemical/physical variations of a fluid. Prior to the molding step, at least one resin layer is formed on at least one region overlying the active surface in correspondence with the membrane. After, at least one portion of at least one resin layer is removed from at least one region, so that in the region an opening is formed, through which the MEMS device is activated from the outside of the protective casing.
摘要:
A method manufactures an electronic device comprising a MEMS device overmolded in a protective casing. The MEMS device includes an active surface wherein a portion of the MEMS device is integrated, and is sensitive, through a membrane, to chemical/physical variations of a fluid. Prior to the molding step, at least one resin layer is formed on at least one region overlying the active surface in correspondence with the membrane. After, at least one portion of at least one resin layer is removed from at least one region, so that in the region an opening is formed, through which the MEMS device is activated from the outside of the protective casing.
摘要:
An encapsulated micro-electro-mechanical device, wherein a MEMS chip is encapsulated by a package formed by a first, a second, and a third substrates that are bonded together. The first substrate has a main surface bearing the MEMS chip, the second substrate is bonded to the first substrate and defines a chamber surrounding the MEMS chip, and the third substrate is bonded to the second substrate and upwardly closes the chamber. A grid or mesh structure of electrically conductive material is formed in or on the third substrate and overlies the MEMS chip; the second substrate has a conductive connection structure coating the walls of the chamber, and the first substrate incorporates an electrically conductive region, which forms, together with the conductive layer and the grid or mesh structure, a Faraday cage.
摘要:
The invention relates to an optical assembly for opto-electronic packages comprising an optical fibre secured on the underside of an elongated support member in optical alignment with an opto-electronic device, wherein said support member is affixed to an aligning member, which in turn is affixed, e.g., by laser welding, to a welding platform. In a preferred embodiment, the elongated support member is a planar parallelepiped. In a further preferred embodiment, the elongated support member is a parallelepiped with an axially extended slot, in which the optical fibre is secured with its longitudinal axis substantially parallel to the axially extended slot.