Abstract:
A system for commissioning a wind turbine is provided. The system includes a test wind turbine, one or more additional wind turbines coupled to the test wind turbine, and a control system. The control system includes a first control module for controlling the one or more additional wind turbines to act as a power source and provide power to the test wind turbine. The control system also includes a second control module for controlling the one or more additional wind turbines to act as a load for dissipating test power generated by the test wind turbine.
Abstract:
Systems and methods for converting power are presented. The power conversion includes conducting load current through a first current path of multiple current paths in a power conversion unit using switches, diodes, or a combination thereof. The power conversion also includes blocking one or more additional current paths of the multiple current paths in the power conversion unit using one or more of the switches, one or more of the diodes, or a combination thereof. Furthermore, the power conversion includes reducing potential voltage stress on the one or more switches by using one or more voltage stress reduction switches to reduce a voltage that is blocked by the one or more blocking switches or diodes by connecting an end of each of the one or more switches opposite to a blocking edge to an intermediate voltage node.
Abstract:
Systems and methods for controlling operation of a power converter based on grid conditions are provided. In particular, a first gating voltage can be applied to a switching element of a power converter associated with a wind-driven power generation system. The first gating voltage can be greater than a threshold voltage for the switching element. A grid event associated with an electrical grid coupled to the power generation system can be detected. A second gating voltage can be applied to the gate of the switching element during the detected grid event. The second gating voltage can be greater than the first gating voltage.
Abstract:
Systems and methods for power conversion are disclosed. The systems and methods use generation of a plurality of power levels approximately equal to multiples of one or more power supply voltage levels along with generation of one or more intermediate power levels between levels of the plurality of power levels via spanning reactor inductors. Furthermore, the method includes generating an output signal using the generated plurality of power levels and the one or more intermediate levels.
Abstract:
A method and system for a control circuit are provided. The circuit includes an integrating counter coupled to a process wherein the integrating counter is configured to integrate over time a process parameter signal received from the process and to generate a trigger signal when the integrated signal equals a predetermined count. The control circuit also includes a transition controller electrically coupled to a respective control element and configured to receive the trigger signal generated by the integrating counter.
Abstract:
Systems and methods for controlling operation of one or more auxiliary circuits in a wind turbine system are provided. For instance, a grid event associated with the wind turbine system can be detected. In response to the grid event, a control signal can be provided to an auxiliary circuit breaker of the wind turbine system. The auxiliary circuit breaker can be associated with one or more auxiliary circuits that are not directly in a power production path of the wind turbine system. The auxiliary circuit breaker can disconnect the one or more auxiliary circuits from the grid based at least in part on the control signal.
Abstract:
Systems and methods for controlling operation of one or more auxiliary circuits in a wind turbine system are provided. For instance, a grid event associated with the wind turbine system can be detected. In response to the grid event, a control signal can be provided to an auxiliary circuit breaker of the wind turbine system. The auxiliary circuit breaker can be associated with one or more auxiliary circuits that are not directly in a power production path of the wind turbine system. The auxiliary circuit breaker can disconnect the one or more auxiliary circuits from the grid based at least in part on the control signal.
Abstract:
The present subject matter is directed to a system and method for controlling an electrical component, e.g. a power bridge, of a wind turbine using contingency communications. In one embodiment, the method includes receiving, by the electrical component, a standard set of commands for a first time frame. A next step includes receiving, by the electrical component, one or more contingency sets of commands for time frames beyond the first time frame. The method also includes determining if the standard set of commands is received within a start window of the first time frame. A further step includes implementing, by the electrical component, the standard set of commands during the first time frame if the standard set of commands is received within the start window. The method also includes implementing, by the electrical component, one of the contingency sets of commands received during a previous time frame if the standard set of commands is not received within the start window.
Abstract:
A load commutated inverter (LCI) drive system for a synchronous electrical machine is provided. The system may include a first supply bridge and a second supply bridge, each of which may include an alternating current to direct current (AC-to-DC) source side converter, a DC link circuit, and a DC-to-AC load side inverter. The system may include a controller for selectively controlling at least one of the first supply bridge and the second supply bridge by selective firings of SCRs. The electrical power outputted from the first supply bridge and the second supply bridge may be combined by an output delta-wye electric power transformer and supplied to the electrical machine. The LCI drive system may further include one or more input electric power transformers configured to supply an input electric power to the first supply bridge and the second supply bridge.
Abstract:
Systems and methods for controlling operation of a power converter based on grid conditions are provided. In particular, a first gating voltage can be applied to a switching element of a power converter associated with a wind-driven power generation system. The first gating voltage can be greater than a threshold voltage for the switching element. A grid event associated with an electrical grid coupled to the power generation system can be detected. A second gating voltage can be applied to the gate of the switching element during the detected grid event. The second gating voltage can be greater than the first gating voltage.