Abstract:
A permanent magnet machine and a rotor assembly for the permanent magnet machine. The permanent magnet machine includes a stator assembly including a stator core configured to generate a magnetic field and extending along a longitudinal axis with an inner surface defining a cavity and a rotor assembly including a rotor core and a rotor shaft. The rotor core is disposed inside the stator cavity and configured to rotate about the longitudinal axis. The rotor assembly further including a plurality of permanent magnets for generating a magnetic field which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed within one or more cavities formed in a sleeve component. The sleeve component configured to include a plurality of cavities or voids therein and thus provide minimal weight to the permanent magnet machine. The permanent magnet machine providing increased centrifugal load capacity, increased power density and improved electrical performance.
Abstract:
A fault detection system for a wind turbine includes a doubly-fed induction generator (DFIG). The DFIG includes a wye-ring configured for at least three electrical phases. The fault detection system includes a data acquisition system including at least three sensors. Each sensor of said at least three sensors is configured to electrically couple with and measure a respective voltage of each phase of the at least three electrical phases of the wye-ring. The fault detection system further includes an alert system coupled to said data acquisition system. The alert system is configured to apply a Fourier transform to the respective measured voltages of each phase of the at least three electrical phases of the wye-ring. The alert system is further configured to provide an indication of a condition of the wye-ring based upon the transformed measured voltages.
Abstract:
A subsea boosting module for use with an alternating current (AC) power system includes a housing defining at least one interior chamber. A fluid pump is disposed within the interior chamber. An electric motor is disposed within the interior chamber and drivingly coupled to the fluid pump. A plurality of power components is disposed within the interior chamber to deliver power to the electric motor.
Abstract:
A subsea power distribution module includes an outer vessel defining an interior chamber and a plurality of power modules disposed within the interior chamber. The outer vessel is configured to maintain a pressure within the interior chamber substantially the same as an ambient pressure outside the outer vessel. Each power module includes a pressure vessel defining an interior chamber and a power converter disposed within the interior chamber of the pressure vessel. Each pressure vessel is configured to maintain a substantially constant pressure within the interior chamber of the pressure vessel.
Abstract:
An electrical machine is provided. The electrical machine includes a stator, a rotor, and a plurality of switches. The stator includes main windings and auxiliary windings. The rotor is couplable to a prime mover configured to turn the rotor relative to the stator to generate at least six phases of alternating current (AC) power at the main windings. The plurality of switches is respectively coupled between the auxiliary windings and groups of the main windings. The plurality of switches is configured to convert the at least six phases to three phases when the plurality of switches is closed.
Abstract:
A subsea boosting module for use with a direct current (DC) power system includes a housing defining at least one interior chamber. A fluid pump is disposed within the interior chamber. An electric motor is disposed within the interior chamber and drivingly coupled to the fluid pump. A plurality of power components is disposed within the interior chamber to deliver power to the electric motor.
Abstract:
An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.
Abstract:
Various embodiments of a circuit breaker are described where a movable bridge connector is employed as part of the conductive path when the circuit breaker is in a closed configuration. When the circuit is opened, the connector is displaced from the two fixed contacts otherwise bridged by the connector. In one such embodiment, the circuit breaker utilizes the electromagnetic forces generated in response to the opening event to break the circuit.
Abstract:
A switched capacitive device includes a stator including a plurality of first electrodes extending substantially in a longitudinal dimension. The switched capacitive device also includes an armature including a plurality of second electrodes proximate the plurality of first electrodes. The plurality of second electrodes is translatable with respect to the plurality of first electrodes. The plurality of second electrodes extends substantially in the longitudinal dimension. The plurality of first electrodes and the plurality of second electrodes are configured to induce substantially linear motion of the second plurality of electrodes in the longitudinal dimension with respect to the first plurality of electrodes as a function of an electric field induced by at least a portion of the first plurality of electrodes.
Abstract:
A permanent magnet machine, a rotor assembly for the machine, and a pump assembly. The permanent magnet machine includes a stator assembly including a stator core configured to generate a magnetic field and extending along a longitudinal axis with an inner surface defining a cavity and a rotor assembly including a rotor core and a rotor shaft. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further including a plurality of permanent magnets for generating a magnetic field which interacts with the stator magnetic field to produce torque. The permanent magnets configured as one of internal or surface mounted. The rotor assembly also including a plurality of retaining clips configured to retain the plurality of permanent magnets relative to the rotor core. The pump assembly including an electric submersible pump and a permanent magnet motor for driving the pump.