Abstract:
One illustrative method disclosed herein includes performing an atomic layer deposition (ALD) process at a temperature of less than 400° C. to deposit a layer of silicon dioxide on a germanium-containing region of semiconductor material and forming a gate structure of a transistor device above the layer of silicon dioxide.
Abstract:
In sophisticated semiconductor devices, transistors may be formed on the basis of an efficient strain-inducing mechanism by using an embedded strain-inducing semiconductor alloy. The strain-inducing semiconductor material may be provided as a graded material with a smooth strain transfer into the neighboring channel region in order to reduce the number of lattice defects and provide enhanced strain conditions, which in turn directly translate into superior transistor performance. The superior architecture of the graded strain-inducing semiconductor material may be accomplished by selecting appropriate process parameters during the selective epitaxial growth process without contributing to additional process complexity.
Abstract:
One illustrative method disclosed herein includes performing an atomic layer deposition (ALD) process at a temperature of less than 400° C. to deposit a layer of silicon dioxide on a germanium-containing region of semiconductor material and forming a gate structure of a transistor device above the layer of silicon dioxide.
Abstract:
Methods for fabricating integrated circuits and components thereof are provided. In accordance with an exemplary embodiment, a method for fabricating an integrated circuit is provided. The method includes providing a semiconductor substrate with a first gate structure and a second gate structure and a shallow trench isolation region outside of the first and second gate structures, depositing a mask on the first gate structure, and depositing a protection layer on the shallow trench isolation region to embed a STI protective cap.
Abstract:
In sophisticated semiconductor devices, transistors may be formed on the basis of an efficient strain-inducing mechanism by using an embedded strain-inducing semiconductor alloy. The strain-inducing semiconductor material may be provided as a graded material with a smooth strain transfer into the neighboring channel region in order to reduce the number of lattice defects and provide enhanced strain conditions, which in turn directly translate into superior transistor performance. The superior architecture of the graded strain-inducing semiconductor material may be accomplished by selecting appropriate process parameters during the selective epitaxial growth process without contributing to additional process complexity.