Abstract:
Integrated circuits and methods of forming the same are provided. An exemplary method of forming an integrated circuit includes forming a dummy gate structure overlying a semiconductor substrate. The dummy gate structure includes a gate dielectric layer, a dummy gate layer, an etch stop layer, and a dummy gate cap layer. First sidewall spacers are formed adjacent to sidewalls of the dummy gate structure. A source and drain region are formed in the semiconductor substrate adjacent to the first sidewall spacers. A dielectric material is deposited adjacent to the first sidewall spacers. The dummy gate cap layer is etched with a first etchant selective thereto after depositing the dielectric material. The etch stop layer is etched with a second etchant that is selective thereto. The dummy gate layer is etched to form a gate recess, and a gate material is deposited in the gate recess.
Abstract:
One illustrative method disclosed herein includes performing an atomic layer deposition (ALD) process at a temperature of less than 400° C. to deposit a layer of silicon dioxide on a germanium-containing region of semiconductor material and forming a gate structure of a transistor device above the layer of silicon dioxide.
Abstract:
Integrated circuits and methods of forming the same are provided. An exemplary method of forming an integrated circuit includes forming a dummy gate structure overlying a semiconductor substrate. The dummy gate structure includes a gate dielectric layer, a dummy gate layer, an etch stop layer, and a dummy gate cap layer. First sidewall spacers are formed adjacent to sidewalls of the dummy gate structure. A source and drain region are formed in the semiconductor substrate adjacent to the first sidewall spacers. A dielectric material is deposited adjacent to the first sidewall spacers. The dummy gate cap layer is etched with a first etchant selective thereto after depositing the dielectric material. The etch stop layer is etched with a second etchant that is selective thereto. The dummy gate layer is etched to form a gate recess, and a gate material is deposited in the gate recess.
Abstract:
One illustrative method disclosed herein includes performing an atomic layer deposition (ALD) process at a temperature of less than 400° C. to deposit a layer of silicon dioxide on a germanium-containing region of semiconductor material and forming a gate structure of a transistor device above the layer of silicon dioxide.
Abstract:
Methods for fabricating MIM capacitors with low VCC or decoupling and analog/RF capacitors on a single chip and the resulting devices are provided. Embodiments include forming: first and second metal lines in a substrate; a first electrode over, but insulated from, the first metal line; a first high-k dielectric layer on the first electrode, the first high-k dielectric layer having a coefficient α; a second electrode on the first high-k dielectric layer and over a portion of the first electrode; a second high-k dielectric layer on the second electrode, the second high-k dielectric layer having a coefficient α′ opposite in polarity but substantially equal in magnitude to α; a third electrode on the second high-k dielectric layer over the entire first electrode; and a metal-filled via through a dielectric layer down to the first metal line, and a metal-filled via through the dielectric layer down to the second metal line.
Abstract:
A thin sub-layer ( 12) host material. The sub-layer may be formed by atomic layer deposition (ALD). The layer and sub-layer are annealed to form a composite dielectric layer. The host material crystallizes, but the crystalline lattice and grain boundaries are disrupted near the impurity sub-layer, impeding the migration of electrons. The impurity may be a material with a lower dielectric constant than the high-k material, added in such a small relative amount that the composite dielectric is still high-k. Metal-insulator-metal capacitors may be fabricated by forming the composite dielectric layer between two electrodes.
Abstract:
The present disclosure is generally directed to various replacement gate structures for semiconductor devices. One illustrative gate structure disclosed herein includes, among other things, a gate insulation layer and a layer of gate electrode material with a substantially horizontal portion having a first thickness and a substantially vertical portion having a second thickness that is less than the first thickness. Furthermore, the substantially horizontal portion of the layer of gate electrode material is positioned adjacent to a bottom of the replacement gate structure and above at least a portion of the gate insulation layer, and the substantially vertical portion is positioned adjacent to sidewalls of the replacement gate structure.