Abstract:
A mold assembly for manufacturing a metal alloy casting includes a cope and drag mold, a plurality of sand cores and a pressure core. The cope mold includes an upper portion of a mold cavity. The drag mold includes a gating system, a lower portion of the mold cavity, and an upper portion of a plurality of riser cavities. The gating system is in communication with the riser cavities to provide pressurized liquid metal alloy to the riser cavities. The pressure core has a plurality of protrusions that are disposed in each of the upper portion of the plurality of riser cavities.
Abstract:
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
Abstract:
Methods for casting high strength, high ductility lightweight metal components are provided. The casting may be die-casting. A molten lightweight metal alloy is introduced into a cavity of a mold. The molten lightweight metal alloy is solidified and then a solid component is removed from the mold. The solid component is designed to have a thin wall. For example, the solid component has at least one dimension of less than or equal to about 2 mm. In this way, a chill zone microstructure is formed that extends across the at least one dimension of the solid lightweight metal alloy component. The solid component thus may be substantially free of dendritic microstructure formation, enabling more extensive alloy chemistries than previously possible during casting. Such methods may be used to form high strength, high ductility, and lightweight metal alloy vehicle components.
Abstract:
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
Abstract:
Methods for casting high strength, high ductility lightweight metal components are provided. The casting may be die-casting. A molten lightweight metal alloy is introduced into a cavity of a mold. The molten lightweight metal alloy is solidified and then a solid component is removed from the mold. The solid component is designed to have a thin wall. For example, the solid component has at least one dimension of less than or equal to about 2 mm. In this way, a chill zone microstructure is formed that extends across the at least one dimension of the solid lightweight metal alloy component. The solid component thus may be substantially free of dendritic microstructure formation, enabling more extensive alloy chemistries than previously possible during casting. Such methods may be used to form high strength, high ductility, and lightweight metal alloy vehicle components.
Abstract:
Stiffeners are disclosed which can be added to the header section of cast light-metal door panels. The header section casting can be designed for manufacturability, and to meet nominal lateral stiffness specifications while making effective use of material. The stiffeners can be cast in place in the header or attached to the header section after casting via snap-fit features, adhesive or both. The stiffeners can themselves be made of a light-weight metal such as aluminum, and can be produced by roll forming, stamping or extrusion. By effectively yielding a closed-section door header shape, the stiffeners provide maximum incremental bending stiffness in the header while adding a minimum amount of incremental material and mass.
Abstract:
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
Abstract:
High-strength aluminum components and methods for preparing a high-strength aluminum component are provided. Methods of forming high-strength aluminum components include heating an aluminum alloy blank above a solvus temperature, quenching the aluminum alloy blank, and stamping the aluminum alloy blank in a die to form an aluminum component having a predetermined shape. A plurality of localized plastic deformations are introduced to select regions of the aluminum component, and the aluminum component is subject to one or more aging treatments including heating the aluminum component to a temperature below the solvus temperature. The localized plastic deformations serve as nucleation sites for precipitation hardening during the one or more aging treatments to form a plurality of strengthened regions in the aluminum component.
Abstract:
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.