Abstract:
A method for classifying a known object in a field of view of a digital camera includes developing a plurality of classifier feature vectors, each classifier feature vector associated with one of a plurality of facet viewing angles of the known object. The digital camera captures an image in a field of view including the known object and an image feature vector is generated based upon said captured image. The image feature vector is compared with each of the plurality of classifier feature vectors and one of the plurality of classifier feature vectors that most closely corresponds to the image feature vector is selected. A pose of the known object relative to the digital camera is determined based upon the selected classifier feature vector.
Abstract:
A method for classifying a known object in a field of view of a digital camera includes developing a plurality of classifier feature vectors, each classifier feature vector associated with one of a plurality of facet viewing angles of the known object. The digital camera captures an image in a field of view including the known object and an image feature vector is generated based upon said captured image. The image feature vector is compared with each of the plurality of classifier feature vectors and one of the plurality of classifier feature vectors that most closely corresponds to the image feature vector is selected. A pose of the known object relative to the digital camera is determined based upon the selected classifier feature vector.
Abstract:
A system for assembling a first component and a second component comprises a support operatively supporting the first component without any fixtures, a vision system configured to view the supported first component and the second component and determine the locations thereof, a robotic system configured to move and position the second component relative to the first component, and a controller operatively connected to the vision system and to the robotic system and operable to control the robotic system to position the second component relative to the first component based on the locations determined by the vision system. Various methods of assembling the first component and the second component are provided to create a process joint prior to creation of a structural joint in a subsequent assembly operation.
Abstract:
The present disclosure relates to methods by which a warped workpiece is reconfigured in a pre-determined manner to reduce a separation between the warped workpiece and a joining workpiece. The warped workpiece is reformed/reshaped, prior to joining, by softening material of the warped workpiece through application of a predetermined amount of energy at or near warping and using a directional force applied to a first surface of the warped workpiece, thus reducing a separation space at a joining interface of the warped workpiece and joining workpiece.
Abstract:
A system includes a first camera defining a first camera coordinate system (C1) and configured to acquire a first image of a scene. A range sensor is spaced a first distance from the first camera and defines a range sensor coordinate system (R). A controller is operatively connected to the first camera and range sensor. The controller has a processor and a tangible, non-transitory memory device on which is recorded instructions for executing a method for obtaining a two-dimensional region of interest (u1*, v1*) in the first image, which is a two-dimensional intensity image. The first image is represented by a plurality of first points (u1, v1) in a first image plane. The controller is configured to acquire a range image of the scene with the range sensor. The range image is represented by a plurality of second points (u2, v2, d) in a second image plane.
Abstract:
A reconfigurable fixture and method for holding a sheet metal part for processing, assembly, or inspection is provided. The reconfigurable fixture includes a holding container made of a flexible material, and holding granules at least partially filling the holding container. The holding container and the holding granules cooperate to conform to the sheet metal part when the sheet metal part is placed on the holding container.
Abstract:
A system for creating an image with a wide dynamic range includes an imaging unit, a processing unit and a control unit operatively connected to each other. The imaging unit is configured to acquire a plurality of images of a scene at respective exposure times such that each of the respective exposure times are different from one another. The images are each represented by a set of pixels, each defining a respective pixel intensity. The processing unit is configured to combine the plurality of images to produce a combined image based at least in part on weighting factors assigned to each pixel and a mapping graph.