Abstract:
An engine system includes: a first throttle valve; a turbocharger compressor disposed downstream of the first throttle valve; a charge air cooler disposed downstream of the turbocharger compressor; a second throttle valve located downstream of the turbocharger compressor; a purge inlet located downstream of the first throttle valve and configured to introduce fuel vapor from a fuel tank into intake air; and an engine control module configured to: maintain the first throttle valve in a fully open position; and selectively close the first throttle valve relative to the fully open position in response to receipt of a request to at least one of: purge fuel vapor from the fuel tank; and at least one of decrease and prevent icing of the charge air cooler.
Abstract:
A vapor purge system for an engine, includes a purge valve having a housing including an input port in communication with a purge canister and including an output port in communication with an intake system component defining a first bore portion receiving the output port with a first seal member disposed therebetween. The intake system component includes a second bore portion receiving a housing portion of the purge valve with a second seal member disposed therebetween. The first and second seal members are spaced such that when the housing is pulled away from the intake system component and the first seal member is out of engagement between the first bore and the output port, the second seal member can remain in engagement so that a diagnostic module can diagnose detachment of the purge valve from the intake system before any hydrocarbon vapor can be released into the atmosphere.
Abstract:
A fuel vapor system for a vehicle includes a fuel vapor canister that traps fuel vapor from a fuel tank of the vehicle. A purge valve opens to allow fuel vapor flow to an intake system of an engine and closes to prevent fuel vapor flow to the intake system of the engine. An electrical pump pumps fuel vapor from the fuel vapor canister to the purge valve. A diagnostic module (a) selectively diagnoses a fault in the fuel vapor system based on at least one of: (i) a speed of the electrical pump measured using a pump speed sensor; and (ii) a pressure at a location between the electrical pump and the purge valve, and (b) illuminates a malfunction indicator lamp (MIL) within a passenger cabin of the vehicle when the fault is diagnosed.
Abstract:
An energy module determines an amount of energy consumed by an electric heater of a fuel vapor canister since an ignition system of the vehicle was last transitioned from OFF to ON. A purge valve control module controls opening a purge valve while the ignition system of the vehicle is ON, wherein fuel vapor flows from the vapor canister through the purge valve to an air intake system when the purge valve is open. A heater control module selectively applies power to the electric heater of the fuel vapor canister and, based on at least one of the amount of energy consumed by the electric heater and a mass of fuel vapor that has flowed through the purge valve, selectively disconnects the electric heater from the power until after the ignition system is transitioned from ON to OFF.
Abstract:
A control system of a vehicle includes a fuel vapor canister that traps fuel vapor from a fuel tank of the vehicle. A purge valve, when open, allows fuel vapor flow into an intake system of an engine at a first location and, when closed, prevents fuel vapor flow to the intake system of the engine. A purge control module controls opening of the purge valve and determines a fuel vapor flow into cylinders of the engine based on: (i) a first pressure at the first location, (ii) a second pressure at a second location between the purge valve and the intake system, and (iii) at least one delay period between opening of the purge valve and fuel vapor reaching cylinders of the engine.
Abstract:
A fuel vapor control system for a vehicle includes a fuel vapor canister that traps fuel vapor from a fuel tank of the vehicle. A purge valve opens to allow fuel vapor flow to an intake system of an engine and closes to prevent fuel vapor flow to the intake system of the engine. An electrical pump pumps fuel vapor from the fuel vapor canister to the purge valve. A vent valve allows fresh air flow to the vapor canister when the vent valve is open and prevents fresh air flow to the vapor canister when the vent valve is closed. A purge control module controls a speed of the electrical pump, opening of the purge valve, and opening of the vent valve.
Abstract:
A system according to the present disclosure includes a pump operating parameter module and a purge flow control module. The pump operating parameter module determines a value of an operating parameter of a purge pump that delivers purge fluid from a canister in an evaporative emissions system to an intake system of an engine. The operating parameter of the purge pump includes at least one of a speed of the purge pump, an amount of current supplied to the purge pump, and an amount of power supplied to the purge pump. The purge flow control module controls at least one of a purge valve and the purge pump to adjust an amount of purge fluid delivered to a cylinder of an engine based on the determined value of the operating parameter of the purge pump.