Abstract:
An engine control system includes a prediction module that, during an exhaust stroke of a first cylinder of an engine, determines a predicted intake manifold pressure at an end of a next intake stroke of a second cylinder following the first cylinder in a firing order of the cylinders. An air per cylinder (APC) module determines a predicted mass of air that will be trapped within the second cylinder at the end of the next intake stroke of the second cylinder based on the predicted intake manifold pressure. A fueling module controls fueling of the second cylinder during the next intake stroke based on the predicted mass of air.
Abstract:
An engine system includes: a first throttle valve; a turbocharger compressor disposed downstream of the first throttle valve; a charge air cooler disposed downstream of the turbocharger compressor; a second throttle valve located downstream of the turbocharger compressor; a purge inlet located downstream of the first throttle valve and configured to introduce fuel vapor from a fuel tank into intake air; and an engine control module configured to: maintain the first throttle valve in a fully open position; and selectively close the first throttle valve relative to the fully open position in response to receipt of a request to at least one of: purge fuel vapor from the fuel tank; and at least one of decrease and prevent icing of the charge air cooler.
Abstract:
A torque requesting module generates a torque request for an engine based on driver input. A model predictive control (MPC) module: identifies sets of possible target values based on the torque request, each of the sets of possible target values including target pressure ratios across a throttle valve; determines predicted operating parameters for the sets of possible target values, respectively; determines cost values for the sets of possible target values, respectively; selects one of the sets of possible target values based on the cost values; and sets target values based on the possible target values of the selected one of the sets, respectively, the target values including a target pressure ratio across the throttle valve. A target area module determines a target opening area of the throttle valve based on the target pressure ratio. A throttle actuator module controls the throttle valve based on the target opening.
Abstract:
A system according to the principles of the present disclosure includes a pedal position prediction module and an engine actuator control module. The pedal position prediction module predicts a pedal position at a future time based on driver behavior and vehicle driving conditions. The pedal position includes at least one of an accelerator pedal position and a brake pedal position. The engine actuator control module controls an actuator of an engine based on the predicted pedal position.
Abstract:
A system according to the principles of the present disclosure includes a target area module and a throttle actuator module. The target area module determines a target opening area of a throttle valve of an engine based on a first target pressure within an intake manifold of the engine when the engine is starting. The throttle actuator module actuates the throttle valve based on the target opening area.