Abstract:
It is disclosed a micro-LED transfer method, manufacturing method and display device. The method for transferring a micro-LED array comprises: patterning conductive resist on a receiving substrate to cover electrodes for the micro-LED array to be transferred; bonding the micro-LED array on a first substrate with the receiving substrate through the conductive resist, wherein the first substrate is laser transparent; irradiating laser onto the micro-LED array from a side of the first substrate to lift-off the micro-LED array from the first substrate. According to an embodiment, the performance of a micro-LED device may be improved.
Abstract:
The present invention provides a method for manufacturing a fully wafer-level-packaged MEMS microphone and a microphone manufactured with the same, the method comprises: separately manufacturing a first packaging wafer, an MEMS microphone wafer and a second packaging wafer; performing wafer-to-wafer bonding for the three wafers to form a plurality of fully wafer-level-packaged MEMS microphone units; singulating the fully wafer-level-packaged MEMS microphone units to form a plurality of fully wafer-level-packaged MEMS microphones, which are fully packaged at wafer level and do not need any further process after die singulation. The method can improve cost-effectiveness, performance consistency, manufacturability, quality, scaling capability of the packaged MEMS microphone.
Abstract:
The present invention provides a silicon microphone with a high-aspect-ratio corrugated diaphragm and a microphone package including the same. The microphone comprises the corrugated diaphragm on which at least one ring-shaped corrugation is formed in the vicinity of the edge of the diaphragm which is fixed to the substrate, the corrugated diaphragm is flexible, wherein the ratio of the depth of the corrugation to the thickness of the diaphragm is larger than 5:1, preferably 20:1, and the walls of the corrugation are inclined to the surface of the diaphragm at an angle in the range of 80° to 100°. The microphone with the high-aspect-ratio corrugated diaphragm can achieve a consistent and optimal sensitivity and greatly reduce impact applied thereto in a drop test so that the performances, the reproducibility, the reliability and the yield can be improved. The microphone package of the present invention further provides a simplified processing, an improved sensitivity and an improved SNR.
Abstract:
The present invention relates to an anti-impact silicon based MEMS microphone, a system and a package with the same, the microphone comprises: a silicon substrate provided with a back hole therein; a compliant diaphragm supported on the silicon substrate and disposed above the back hole thereof; a perforated backplate disposed above the diaphragm with an air gap sandwiched in between, and further provided with one or more first thorough holes therein; and a stopper mechanism, including one or more T-shaped stoppers corresponding to the one or more first thorough holes, each of which has a lower part passing through its corresponding first thorough hole and connecting to the diaphragm and an upper part being apart from the perforated backplate and free to vertically move, wherein the diaphragm and the perforated backplate are used to form electrode plates of a variable condenser.
Abstract:
A micro laser diode projector comprises: an MEMS scanning device, which rotates around a first axis and a second axis that are orthogonal to each other; and a micro laser diode light source including at least one micro laser diode, wherein the micro laser diode light source is mounted on the MEMS scanning device and rotates around the first and second axes with the MEMS scanning device to project light to a projection screen. An electronics apparatus including the micro laser diode projector is also discussed.
Abstract:
A piezoelectric speaker and a method for forming the piezoelectric speaker are provided. The method includes: providing a piezoelectric actuator which includes a piezoelectric layer, a bottom electrode and a top electrode, wherein the bottom electrode and the top electrode are on two opposite surfaces of the piezoelectric layer; providing a speaker frame which includes a base and a bump structure on the base; forming a solder layer on a top surface of the bump structure; and combining the bottom electrode of the piezoelectric actuator with the speaker frame through the solder layer.
Abstract:
An image display device comprises: a thin film transistor backplane (1), and a first resolution display panel (2), a second resolution display panel (4), a display driving chip (3) and an integrated display driver (5), which are fixed on the thin film transistor backplane (1); the display driving chip (3) is electrically connected to bonding pads (111) on the thin film transistor backplane (1), and is provided under the second resolution display panel (4); and the display driving chip (3) is used for driving the second resolution display panel (4); the integrated display driver (5) is used for driving the first resolution display panel (2); and a resolution of the first resolution display panel (2) is lower than a resolution of the second resolution display panel (4). The first resolution display panel (2) is driven by the standard drive manner of thin film transistor display panels, to realize low resolution displaying, and the second resolution display panel (4) is driven by the display driving chip (3), to improve the displaying quality of the display device.
Abstract:
The present disclosure provides a laser projection device and a laser projection system. The laser projection device includes a light source scanner and a MEMS scanning mirror, the light source scanner including micro laser diodes; and the micro laser diodes are used to provide laser beams needed for image projection, and the laser beams are projected to the MEMS scanning mirror, and then reflected by the MEMS scanning mirror to a predetermined area to form a projection image. By providing the micro laser diodes in the laser projection device and initiatively emitting laser by exciting the micro laser diodes, the present disclosure does not need an external laser source and facilitates the reduction of the size of the laser projection device, as compared with the prior art.
Abstract:
The present invention provides a method for manufacturing a thermal bimorph diaphragm and a MEMS speaker with thermal bimorphs, wherein the method comprises the steps of: thermally oxidizing a substrate to obtain an insulating layer thereon and providing a metal layer on the insulating layer; providing a sacrificial layer on the metal layer; providing a first thermal bimorph layer on the sacrificial layer; providing a second thermal bimorph layer on the first thermal bimorph layer; providing a metal connecting layer at the positions on the metal layer where the sacrificial layer is not provided; forming corresponding back holes on the substrate and the insulating layer and releasing the sacrificial layer; forming the thermal bimorph diaphragm which is warped with the first thermal bimorph layer and the second thermal bimorph layer after the sacrificial layer is released.