Abstract:
A system and method determines a plurality of scores for a road segment that are related to the total distance traveled when drivers traverse that road segment. The scores are displayed graphically to illustrate the usage of road segments. The scores are also used to determine which road segments to display on a map when determining which roads to display at a given zoom level for a map.
Abstract:
Methods and systems for grouping computing devices together based on the devices being colocated with one another or being associated with complementary usage contexts, and then using the location or usage context of one device in the group to estimate the location or usage context of another device in the group are described. An example method may include receiving first sensor data from sensors of a first computing device; receiving second sensor data from sensors of a second computing device; determining, based on the received sensor data, that the first and second computing devices are colocated with one another; identifying, based on the first sensor data, a context associated with the first computing device; and determining, based at least in part on the context associated with the first computing device, a context associated with the second computing device.
Abstract:
Aspects of the disclosure relate to generating incentives. An access point model may be generated based in part on access point model data, e.g., collected scan information from devices that travel through an indoor space. The wireless access point model may include an indoor map of a location or building, such as a store or portion of a store. At some point, it may be determined that the access point model data may not meet a predetermined quality threshold. For example, the data may be outdated or inaccurate. An incentive may be generated and transmitted to a client device within a predetermined distance of the access point associated with the access point model. When the client device redeems the incentive and enters the indoor space associated with the access point, scan information may be collected. The scan information may be used to update or otherwise modify the access point model.
Abstract:
Methods and systems for grouping computing devices together based on the devices being colocated with one another or being associated with complementary usage contexts, and then using the location or usage context of one device in the group to estimate the location or usage context of another device in the group are described. An example method may include receiving first sensor data from sensors of a first computing device; receiving second sensor data from sensors of a second computing device; determining, based on the received sensor data, that the first and second computing devices are colocated with one another; identifying, based on the first sensor data, a context associated with the first computing device; and determining, based at least in part on the context associated with the first computing device, a context associated with the second computing device.
Abstract:
A system and method for mapping an indoor environment. A client device may receive an indication of a starting point on a floor plan. The client device may prompt the user to travel in a particular direction and indicate when the user can no longer travel in that direction. As the user travels from the starting point in the designated direction, the client device may gather information about the indoor environment. For example, the client device may gather wireless signal strength data, cellular tower strength data, or video image data while the user travels in the designated direction. The client device may associate the gathered information with the path the user traveled from the starting point to the ending point. The client device may indicate the area for which valid location information is available based on the path the user traveled and the information the user collected.
Abstract:
Maps are created that display representations of GPS data generated from a plurality of GPS devices. The GPS data received from the GPS devices is embodied as a representation having descriptive features that visually indicate the location, direction of travel, and speed of travel of the GPS device, and the representation is associated with a road segment on the map. The display of the GPS data from a plurality of GPS devices can be used for editing information about roads on maps and determining preferred routes.
Abstract:
Conducting hands-free transactions comprises a server at a payment processing system, a user computing device, and a merchant computing device. The payment processing system registers a merchant system as a hands-free payment participant and provides a beacon identifier. The payment processing system receives a communication from a hands-free payment application on a user computing device, the communication comprising a transaction token, an identification of a user account, and the beacon identifier received by the user computing device via a wireless communication from a device associated with the merchant system and transmits the transaction token to the merchant system computing device. The payment processing system receives from the merchant system computing device, a transaction request, the transaction request comprising the token and transaction data associated with the transaction request and conducts the transaction between the user account and the merchant system based on the received token and transaction request.
Abstract:
A wearable computing device is described that detects an indication of movement associated with the wearable computing device when a user of the wearable computing device detected being located within a moving vehicle. Based at least in part on the indication of movement, a determination is made that the user of the wearable computing device is currently driving the moving vehicle. An operation is performed based on the determination that the user of the wearable computing device is currently driving the moving vehicle.
Abstract:
The present disclosure describes methods, systems, and apparatuses for determining the likelihood that two wireless scans of a mobile computing device were performed in the same location. The likelihood is determined by scanning for wireless networks with a computing device. The scanning includes a receiving a plurality of network attributes for each wireless networks within the range of the mobile computing device. Further, the likelihood is determined by comparing the plurality of network attributes from the scanning with a reference set of network attributes. The comparing of network attributes is used to determine an attribute comparison. Finally, the likelihood between a position associated with the reference set of network attributes and the computing device, based on the attribute comparison, determines a position associated with the network.
Abstract:
An autocheck module of a map system is configured to automatically identify anomalous conditions within map data that may indicate an error within the data. The identification of the anomalous conditions is accomplished by application of different autocheck types to the map data, each autocheck type representing a class of anomalies and being triggered if particular map data exhibits the anomalous condition associated with the autocheck type. In one embodiment, for at least some of the portions of map data that trigger an autocheck type, an issue entry is created in an issue database, the issue entry referencing the autocheck type that was triggered, the map data that triggered it, and any associated data of relevance for the particular autocheck type in question.