摘要:
Methods and apparatus for rendering quantitative phase maps across and through transparent samples. A broadband source is employed in conjunction with an objective, Fourier optics, and a programmable two-dimensional phase modulator to obtain amplitude and phase information in an image plane. Methods, referred to as Fourier transform light scattering (FTLS), measure the angular scattering spectrum of the sample. FTLS combines optical microscopy and light scattering for studying inhomogeneous and dynamic media. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. Full angular information, limited only by the microscope objective, is obtained from extremely weak scatterers, such as a single micron-sized particle. A flow cytometer may employ FTLS sorting.
摘要:
Methods and apparatus for rendering quantitative phase maps across and through transparent samples. A broadband source is employed in conjunction with an objective, Fourier optics, and a programmable two-dimensional phase modulator to obtain amplitude and phase information in an image plane. Methods, referred to as Fourier transform light scattering (FTLS), measure the angular scattering spectrum of the sample. FTLS combines optical microscopy and light scattering for studying inhomogeneous and dynamic media. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. Full angular information, limited only by the microscope objective, is obtained from extremely weak scatterers, such as a single micron-sized particle. A flow cytometer may employ FTLS sorting.
摘要:
Methods and apparatus for rendering quantitative phase maps across and through transparent samples. A broadband source is employed in conjunction with an objective, Fourier optics, and a programmable two-dimensional phase modulator to obtain amplitude and phase information in an image plane. Methods, referred to as Fourier transform light scattering (FTLS), measure the angular scattering spectrum of the sample. FTLS combines optical microscopy and light scattering for studying inhomogeneous and dynamic media. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. Full angular information, limited only by the microscope objective, is obtained from extremely weak scatterers, such as a single micron-sized particle. A flow cytometer may employ FTLS sorting.
摘要:
Methods for displaying anisotropic properties of an object. The object is illuminated with a first test beam characterized by a first polarization that, after traversing the object, is combined with a reference beam. The combined light of the first transmitted test beam and the reference beam is analyzed by a first pair of polarization analyzers, and interference created between the first transmitted test beam and the reference beam as analyzed by the first pair of analyzers is detected to derive intensity, phase and polarization of the first transmitted test beam. The same is then done with a second test beam that has a polarization with a component orthogonal to the first polarization. Based on the two analyzed beams, complex elements of a Jones matrix associated with the object in a local coordinate system are determined and a plurality of tangible images are displayed that characterize the object based on the complex elements of the Jones matrix.
摘要:
Methods and apparatus for rendering quantitative phase maps across and through transparent samples. A broadband source is employed in conjunction with an objective, Fourier optics, and a programmable two-dimensional phase modulator to obtain amplitude and phase information in an image plane. Methods, referred to as Fourier transform light scattering (FTLS), measure the angular scattering spectrum of the sample. FTLS combines optical microscopy and light scattering for studying inhomogeneous and dynamic media. FTLS relies on quantifying the optical phase and amplitude associated with a coherent image field and propagating it numerically to the scattering plane. Full angular information, limited only by the microscope objective, is obtained from extremely weak scatterers, such as a single micron-sized particle. A flow cytometer may employ FTLS sorting.
摘要:
Methods for displaying anisotropic properties of an object. The object is illuminated with a first test beam characterized by a first polarization that, after traversing the object, is combined with a reference beam. The combined light of the first transmitted test beam and the reference beam is analyzed by a first pair of polarization analyzers, and interference created between the first transmitted test beam and the reference beam as analyzed by the first pair of analyzers is detected to derive intensity, phase and polarization of the first transmitted test beam. The same is then done with a second test beam that has a polarization with a component orthogonal to the first polarization. Based on the two analyzed beams, complex elements of a Jones matrix associated with the object in a local coordinate system are determined and a plurality of tangible images are displayed that characterize the object based on the complex elements of the Jones matrix.
摘要:
A multiplying analog to digital converter including an analog to digital converter (ADC) having a sample input and a feedback input and an ADC output configured with a feedback path configured to couple the ADC output to a digital to analog converter. A feedback attenuator is disposed in the feedback path, the feedback attenuator being configured to attenuate a feedback signal coupled to the feedback input, the feedback attenuator being configured to provide analog multiplication observed at the ADC output. A barrel shifter is configured to provide digital multiplication of the ADC output. The feedback attenuator may be configured as a divider network. The feedback attenuator may be configured to provide attenuation using only passive components. The feedback attenuator may be configured as a capacitive divider network. The feedback attenuator may be configured to provide attenuation ranging between 1 and 0.5.
摘要:
A luminaire includes a plurality of solid state light sources arranged to emit light in respective angular distributions that are centered along a common optical axis. A reflector including one or more reflecting surfaces is arranged along a periphery of the solid state light sources. The reflector is positioned to receive light emitted at relatively high propagation angles from the solid state light sources, with respect to the optical axis, and reflects the light to have reduced propagation angles, with respect to the optical axis. The one or more reflecting surfaces have a generally flat cross-section that is angled away from the optical axis, and are arranged in a pattern around the periphery of the solid state light sources. The one or more reflecting surfaces can reflect specularly or diffusely.
摘要:
A luminaire is provided to redirect incidence light from one or more solid state light sources to a batwing distribution with both tunable peak angle and beam width. The peak angle is able to be tuned from 90 degree to 0 degree from the incidence direction with very high efficiency. The beam width is able to be tuned with either narrow beam angle solid state light sources for high efficiency or TIR lens or the optical properties of a reflector for versatility. Uniform illuminance distribution is thus achieved across a wide field with or without a prism or diffuser cover.