摘要:
A multiplying analog to digital converter (ADC) including a successive-approximation-register (SAR) analog to digital converter (ADC) having a sample input and a feedback input and an ADC output configured with a feedback path configured to couple the ADC output to a digital to analog converter. A feedback attenuator is disposed in the feedback path, the feedback attenuator being configured to attenuate a feedback signal coupled to the feedback input, the feedback attenuator being configured to provide analog multiplication observed at the ADC output. A barrel shifter is configured to provide digital multiplication of the ADC output. The feedback attenuator may be configured as a divider network. The feedback attenuator may be configured to provide attenuation using only passive components. The feedback attenuator may be configured as a capacitive divider network. The feedback attenuator may be configured to provide attenuation ranging between 1 and 0.5.
摘要:
A multiplying analog to digital converter (ADC) including a successive-approximation-register (SAR) analog to digital converter (ADC) having a sample input and a feedback input and an ADC output configured with a feedback path configured to couple the ADC output to a digital to analog converter. A feedback attenuator is disposed in the feedback path, the feedback attenuator being configured to attenuate a feedback signal coupled to the feedback input, the feedback attenuator being configured to provide analog multiplication observed at the ADC output. A barrel shifter is configured to provide digital multiplication of the ADC output. The feedback attenuator may be configured as a divider network. The feedback attenuator may be configured to provide attenuation using only passive components. The feedback attenuator may be configured as a capacitive divider network. The feedback attenuator may be configured to provide attenuation ranging between 1 and 0.5.
摘要:
A multiplying analog to digital converter including an analog to digital converter (ADC) having a sample input and a feedback input and an ADC output configured with a feedback path configured to couple the ADC output to a digital to analog converter. A feedback attenuator is disposed in the feedback path, the feedback attenuator being configured to attenuate a feedback signal coupled to the feedback input, the feedback attenuator being configured to provide analog multiplication observed at the ADC output. A barrel shifter is configured to provide digital multiplication of the ADC output. The feedback attenuator may be configured as a divider network. The feedback attenuator may be configured to provide attenuation using only passive components. The feedback attenuator may be configured as a capacitive divider network. The feedback attenuator may be configured to provide attenuation ranging between 1 and 0.5.
摘要:
A weak binary classifier configured to receive an input signal for classification and generate a classification output is disclosed. The weak binary classifier includes a plurality of weighting amplifier stages, each weighting amplifier stage being configured to receive the input signal for classification and a weighting input derived from a classifier model and generate a weighted input signal, the plurality of weighting amplifier stages being configured to generate a plurality of positive weighted input signals coupled to a positive summing node and a plurality of negative weighted input signals coupled to a negative summing node. The weak binary classifier also includes a comparator having a non-inverting input coupled to the positive summing node and an inverting input coupled to the negative summing node and being configured to generate a weak classification output based on the plurality of weighted input signals.
摘要:
Large-area electronics (LAE) enables the formation of a large number of sensors capable of spanning dimensions on the order of square meters. An example is X-ray imagers, which have been scaling both in dimension and number of sensors, today reaching millions of pixels. However, processing of the sensor data requires interfacing thousands of signals to CMOS ICs, because the implementation of complex functions in LAE has proven unviable due to the low electrical performance and inherent variability of the active devices available, namely amorphous silicon (a-Si) thin-film transistors (TFTs) on glass. Envisioning applications that perform sensing on even greater scales, disclosed is an approach whereby high-quality image detection is performed directly in the LAE domain using TFTs. The high variability and number of process defects affecting both the TFTs and sensors are overcome using a machine-learning algorithm, known as Error-Adaptive Classifier Boosting (EACB), to form an embedded classifier. Through EACB, the high-dimensional sensor data can be reduced to a small number of weak-classifier decisions, which can then be combined in the CMOS domain to generate a strong-classifier decision.
摘要:
A weak binary classifier configured to receive an input signal for classification and generate a classification output is disclosed. The weak binary classifier includes a plurality of weighting amplifier stages, each weighting amplifier stage being configured to receive the input signal for classification and a weighting input derived from a classifier model and generate a weighted input signal, the plurality of weighting amplifier stages being configured to generate a plurality of positive weighted input signals coupled to a positive summing node and a plurality of negative weighted input signals coupled to a negative summing node. The weak binary classifier also includes a comparator having a non-inverting input coupled to the positive summing node and an inverting input coupled to the negative summing node and being configured to generate a weak classification output based on the plurality of weighted input signals.
摘要:
A system and method for interfacing large-area electronics with integrated circuit devices is provided. The system may be implemented in an electronic device including a large area electronic (LAE) device disposed on a substrate. An integrated circuit IC is disposed on the substrate. A non-contact interface is disposed on the substrate and coupled between the LAE device and the IC. The non-contact interface is configured to provide at least one of a data acquisition path or control path between the LAE device and the IC.
摘要:
A memory device includes a plurality of cells comprising CMOS structures. A non-strobed regenerative sense-amplifier (NSR-SA) is coupled to the cells and employs offset compensation and avoids strobe timing uncertainty to increase read-access speeds.
摘要:
Various embodiments comprise systems, methods, architectures, mechanisms, apparatus, and improvements thereof for in-memory computing using charge-domain circuit operation to provide energy efficient, high speed, capacitor-based in-memory computing. Various embodiments contemplate controlling input signal presentation within in-memory computing structures/macros in accordance with predefined or dynamic switch selection criteria to reduce energy consumption associated with charging and/or discharging summing capacitors during reset and evaluation operating modes of multiplying bit-cells (M-BCs).
摘要:
A biomedical device for comprehensive and a data-driven patient monitoring is disclosed. The biomedical device includes a receiver to receive sensor data associated with physiological signals and perform feature computations on the sensor data. A control system is included to classify the sensor data using the feature computations to generate medically-relevant decisions and identify relevant data instances, and to automatically select a set of relevant data instances. A base station or programming interface can provide a patient-generic seed model to the biomedical device. The patient-specific seed model is usable by the control system to automatically select a coarse set of relevant data instances that are transmitted to the base station, which in turn analyzes the coarse set of relevant data instances to generate a patient-specific model. The biomedical device receives the patient-specific model, which is usable by the control system to automatically select a refined set of relevant data instances.