Abstract:
The present invention is directed to implementations of apparatus and methods for controlling a machining system by means of a control program. In some implementations, apparatus include a data storage, in which standard machining parameters are stored to which the control program refers, an adjustment device can be activated in accordance with the invention for adjusting the machining parameters in a preset fashion based on the material properties of a workpiece to be processed and/or a selectable machining target value.
Abstract:
A mirror assembly for an optical system of a laser processing machine includes a mount with a cavity, and an adaptive mirror. A magnetorheological or electrorheological fluid flows through the cavity, is adjusted in its viscosity, and provides an adjustable pressure onto the adaptable mirror.
Abstract:
A condition or detecting a change in the condition of an optical element of a laser arrangement is detected. An ultrasonic signal is coupled into an optical element such that the ultrasonic signal travels along a path within the optical element, and a transit time or a change in transit time for the ultrasonic signal to travel along the path within the optical element is detected.
Abstract:
Determination of the relative positioning of a laser machining beam and a process gas jet on a laser machine tool are accomplished by motion of detections made while moving the machining beam and gas jet in relation to a detection element. In some cases actions of the beam and gas jet themselves are detected, such as by cutting light response and sensor deflection caused by the gas jet. Relative head positions at the time of the deflections are used to calculate misalignment between the laser beam and gas jet.
Abstract:
A condition or detecting a change in the condition of an optical element of a laser arrangement is detected. An ultrasonic signal is coupled into an optical element such that the ultrasonic signal travels along a path within the optical element, and a transit time or a change in transit time for the ultrasonic signal to travel along the path within the optical element is detected.
Abstract:
A laser processing machine for processing workpieces includes a beam guide containing a gas atmosphere, and also includes an apparatus for investigating the gas atmosphere in the beam guide for impurities. The investigation apparatus makes use of the photoacoustic effect. The measuring apparatus has a measuring chamber and at least one measuring head, where the beam guide acts as the measuring chamber. As a measuring chamber, the beam guide contains the gas atmosphere that is to be investigated and also a modulated laser beam modulated. The measuring head(s) are integrated into the beam guide and are used to detect the photoacoustic effect in the measuring chamber.
Abstract:
A mirror assembly for an optical system of a laser processing machine includes a mount with a cavity, and an adaptive mirror. A magnetorheological or electrorheological fluid flows through the cavity, is adjusted in its viscosity, and provides an adjustable pressure onto the adaptable mirror.
Abstract:
Determination of the relative positioning of a laser machining beam and a process gas jet on a laser machine tool are accomplished by motion of detections made while moving the machining beam and gas jet in relation to a detection element. In some cases actions of the beam and gas jet themselves are detected, such as by cutting light response and sensor deflection caused by the gas jet. Relative head positions at the time of the deflections are used to calculate misalignment between the laser beam and gas jet.
Abstract:
The invention relates to an apparatus and a process for producing a three-dimensional shaped body by successive consolidation of layers of a pulverulent build-up material, which can be consolidated by means of electromagnetic radiation or particle radiation, at locations corresponding to the respective cross section of the shaped body, having a beam source for generating a focussed beam and a deflection device for diverting the focussed beam onto the layer which is to be consolidated, having a carrier in a build-up chamber, adjacent to a process chamber, for receiving the shaped body which is to be formed, wherein at least two working stations are formed by in each case one process chamber, the process chambers are hermetically locked off and are each designed to be separate from one another, and the deflection device and the at least two working stations can be positioned in a working position with respect to one another.
Abstract:
The invention relates to an optical element for guiding and forming a laser beam, and to a method for recording beam parameters, particularly in a laser system, comprising a carrier substrate (40) and a coating (39), which is applied to at least one side of the carrier substrate (40), and comprising at least one temperature sensor (38). The temperature sensor (38) is comprised of a number of pixels arranged in a matrix, and each respective pixel has at least one temperature-sensitive element (39). The at least one temperature-sensitive element (39) of the pixel is constructed inside the carrier substrate (40) made of silicon.