Abstract:
Methods and systems for calibrating a sensor for measuring an analyte in a patient monitoring system are disclosed. The method includes calculating sensor drift; calibrating the sensor using at least one calibration fluid; and periodically updating the sensor calibration based on the sensor drift calculation. The system adjusts a gas concentration in a fluid. The method in one of several variations includes providing a calibration fluid; setting the analyte concentration in the first fluid to a first concentration with an adjustment mechanism; measuring the first analyte concentration with the sensor; setting the analyte concentration in the first fluid to a second concentration; measuring the second analyte concentration with the sensor; and determining the calibration coefficients for the sensor from the measured first and second analyte concentrations. Some embodiments ensure that the period between recalibrations of the sensor is extended, thus reducing the number of disruptions to the sensor monitoring process.
Abstract:
This invention relates to a sensor suitable for detecting the presence of one or more analytes. The sensor comprises a substrate; a confinement structure disposed on the substrate, wherein the confinement structure comprises at least a first limiting structure defining a first interior space; a transducer proximal to the first interior space; and a first synthetic polymer capable of selectively binding a first analyte, within the confinement structure. The confinement structure may have a second or further limiting structure defining a second or further interior space containing the first or preceding interior space. The sensor may also have additional confinement structures containing different materials for detecting additional analytes or taking reference measurements.
Abstract:
A method of hermetically packaging an electronic device (8), in an enclosure (2) comprising mutually inter-engageable first and second housing members (4, 6), comprising the steps of securing the electronic device (8) to the first housing member (4), engaging the first (4) and second (6) housing members such that an hermetic seal is provided there between, wherein the engagement step is performed in a controlled atmosphere. The hermetic seal may be provided by an interference fit between the first (4) and second (6) housing members or via sealing means (16) interposed between the housing members (4, 6). The second housing member (6) may comprise an optical element (20), for example a window or lens. The packaging method is particularly applicable to packaging thermal detectors, for example microbolometer arrays.
Abstract:
The invention relates to an optical element for guiding and forming a laser beam, and to a method for recording beam parameters, particularly in a laser system, comprising a carrier substrate (40) and a coating (39), which is applied to at least one side of the carrier substrate (40), and comprising at least one temperature sensor (38). The temperature sensor (38) is comprised of a number of pixels arranged in a matrix, and each respective pixel has at least one temperature-sensitive element (39). The at least one temperature-sensitive element (39) of the pixel is constructed inside the carrier substrate (40) made of silicon.
Abstract:
The present application discloses a number of methods of calibrating a sensor for measuring an analyte in a patient monitoring system. In a first embodiment, the method comprises calculating a sensor drift; calibrating the sensor using at least one calibration fluid; and periodically updating the sensor calibration based on the sensor drift calculation. In a second embodiment, the system comprises means for adjusting a gas concentration in a fluid, and the method comprises providing a calibration fluid; setting the analyte concentration in the first fluid to a first concentration with said adjusting means; measuring the first analyte concentration with the sensor; setting the analyte concentration in the first fluid to a second concentration with said adjusting means; measuring the second analyte concentration with the sensor; and determining the calibration coefficients for the sensor from the measured first analyte concentration and the measured second analyte concentration. In a third embodiment, the method comprises exposing the sensor to a first fluid comprising a first unknown concentration of the analyte; measuring the first unknown analyte concentration with the sensor; determining the first unknown analyte concentration with an analyser external to the patient monitoring system; providing the sensor with the determined first analyte concentration, and determining the calibration coefficients for the sensor from the measured first unknown analyte concentration and the analyte concentration determined by the analyser. At least some of the above embodiments ensure that the period between recalibrations of the sensor is extended, thus reducing the number of disruptions to the sensor monitoring process.
Abstract:
The invention relates to an optical element for guiding and forming a laser beam, and to a method for recording beam parameters, particularly in a laser system, comprising a carrier substrate (40) and a coating (39), which is applied to at least one side of the carrier substrate (40), and comprising at least one temperature sensor (38). The temperature sensor (38) is comprised of a number of pixels arranged in a matrix, and each respective pixel has at least one temperature-sensitive element (39). The at least one temperature-sensitive element (39) of the pixel is constructed inside the carrier substrate (40) made of silicon.